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Abstract
Narrowband and broadband indoor radar images significantly deteriorate in the presence of
target‐dependent and target‐independent static and dynamic clutter arising from walls. A
stacked and sparse denoising autoencoder (StackedSDAE) is proposed for mitigating the
wall clutter in indoor radar images. The algorithm relies on the availability of clean images
and the corresponding noisy images during training and requires no additional information
regarding the wall characteristics. The algorithm is evaluated on simulated Doppler‐time
spectrograms and high‐range resolution profiles generated for diverse radar frequencies
and wall characteristics in around‐the‐corner radar (ACR) scenarios. Additional experi-
ments are performed on range‐enhanced frontal images generated from measurements
gathered from a wideband radio frequency imaging sensor. The results from the experi-
ments show that the StackedSDAE successfully reconstructs images that closely resemble
those that would be obtained in free space conditions. Furthermore, the incorporation of
sparsity and depth in the hidden layer representations within the autoencoder makes the
algorithmmore robust to low signal‐to‐noise ratio (SNR) and label mismatch between clean
and corrupt data during training than the conventional single‐layer DAE. For example, the
denoised ACR signatures show a structural similarity above 0.75 to clean free space images
at SNR of −10 dB and label mismatch error of 50%.

1 | INTRODUCTION

Several types of urban radars have been researched and
developed for civilian and military applications such as law
enforcement, search and rescue, biomedical applications
related to elderly monitoring and assisted living [1–6]. The
primary objectives of most indoor radars are human detection
and localization. Moving humans are detected based on the
Doppler modulations that are introduced to coherent radar
transmit waveforms. The movements of the limbs of the hu-
man introduce micro‐Doppler features which are captured
through single dimension Doppler‐time spectrograms using
joint time‐frequency transforms [5, 7–10]. When the contin-
uous wave radar is augmented with array processing, we obtain
Doppler enhanced images along azimuth [11] or both azimuth
and elevation [12, 13]. Alternatively, broadband pulse, linear
frequency modulated or stepped frequency radars use fine
downrange resolution to detect and track human motions
along the range dimension [14–17]. The resulting radar sig-
natures are either single dimension high range resolution

profiles (HRRP) (range‐time signatures) [18] or range‐
enhanced higher order plots [19, 20]. Human activities are
detected and interpreted on the basis of their micro‐Doppler
and micro‐range features [3, 21–24].

Indoor radars could either be deployed in line‐of‐sight
(LOS) environments (such as for fall monitoring of the
elderly) or in non‐line‐of‐sight (NLOS) environments (for
security and surveillance purposes). The two most common
NLOS deployments are the through‐wall radar [1, 2, 25] and
the around‐the‐corner radar (ACR) [26–30]. However, in both
cases, the quality of radar signatures are greatly impacted by
complex propagation artefacts introduced by walls such as the
attenuation and multipath clutter [31–34]. We broadly catego-
rize indoor clutter into two types‐target independent, and
target dependent static and dynamic clutter.

Target‐independent static clutter arises from the reflections
of the radar signal off the lateral walls, ground, ceiling and
other furniture in the rooms. While the target dependent static
clutter is generated through reflections and refraction of signals
from the target to side and back walls, reverberations within
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the front wall result in ghost targets and defocusing of targets.
Several research efforts have been devoted to mitigate these
artefacts on the radar signatures [35, 36]. The authors in [19,
20] used back‐projection and sparsity‐based change detection
algorithms, respectively, to track slow‐moving humans in the
range‐crossrange space in the presence of target‐dependent
static clutter. These techniques relied on the availability of
prior information of the wall geometry and characteristics in
indoor scenarios. Alternatively, authors in [37, 38] adopted the
multipath exploitation strategy wherein the wall and target
returns were projected on higher order subspaces based on
their sparsity‐based representations. Then, the wall effects were
removed from the target returns. While this is an effective
strategy for removing the target‐independent static clutter, it
cannot be used for the target‐dependent clutter since the target
and clutter returns are no longer independent of each other.
Dynamic clutter, on the other hand, arises due to the presence
of other movers in the channel (target independent dynamic
clutter) or due to the interactions between the dynamic target
and the channel (target‐dependent dynamic clutter). The
former can be separated on the basis of the micro‐Doppler
returns [39]. The latter is relatively difficult to remove as the
target returns are not independent of complex wall propaga-
tion phenomenology.

Besides clutter, indoor radar signatures are also affected by
noise and interference. Indoor radars typically operate below X
band frequencies in order to enable radar signal penetration
through the wall materials. These radars are federally mandated
to transmit low powers to limit the possibility of electromag-
netic interference with other wireless devices. On the other
hand, these indoor radars may also encounter significant
interference from neighbouring wireless systems in the envi-
ronment such as WiFi. Therefore, successful radar detection of
targets in these circumstances, rely on effective clutter, noise
and interference management strategies. Here, we propose to
use denoising autoencoders (DAEs) to recover high‐quality
radar signatures similar to free space signatures even under
low signal to clutter and noise ratios (SCNRs).

DAE are neural networks with two stages—an encoder
and a decoder as shown in Figure 1 [40]. During training, the
encoder in the network is trained to represent a noisy image
(bx ) with a hidden layer (Z). Then, the decoder is simulta-
neously trained to recover a clean/denoised image (ex ) from
the hidden layer that resembles a ground truth clean image (x).
During the test, the encoder is fed with noisy images, and
clean images are gathered at the output of the decoder. The
DAE has been widely applied in many different fields such as
computer vision [41, 42], anomaly detection and natural lan-
guage processing [41, 43–45]. In [34], we demonstrated the
usefulness of DAE for removing the dynamic clutter from
through‐wall frontal radar images. The algorithm demon-
strated robust denoising and clutter mitigation performance
for diverse wall and target conditions. However, the good
performance of the network was predicated on two assump-
tions. First, the availability of a large volume of correctly
labelled clean and noisy images during training. Second, the
signal‐to‐noise ratio (SNR) of the radar system is high.

However, in real‐world scenarios, both of these assumptions
are often violated. For example, it may be nearly impossible to
exactly replicate the same motion of the target in free space
and then in the indoor channel conditions. Similarly, the
channel may be plagued by high noise and interference, as
discussed earlier. Therefore, we propose to use a stacked DAE
with sparsity constraints on the hidden layer representations
[40, 46], hitherto referred to as the StackedSDAE. In other
words, instead of a single hidden layer, we propose a cascade
of hidden layers, as shown in Figure 1b, where the represen-
tations are generated from sparsity‐based constraints. The
motivation of the approach is that such deeper representations
enable the network to capture higher order abstractions in
clean and noisy images. The incorporation of these additional
hidden layers increases the computational time complexity
during training but there is a significant reduction during test
due to the feature size reduction within the hidden layers.
Preliminary studies with the StackedSDAE were presented in
[47]. Here, we offer a more comprehensive experimental
evaluation of the proposed algorithm.

The proposed StackedSDAE can be used for any type
of radar signature where corrupted and corresponding clean
images are available. In this article, we have tested the
proposed algorithm on different types of narrowband and
broadband radar images of a dynamic human. First, ACR
signatures are simulated using a combination of electro-
magnetic modelling using a full‐wave solver and animation
models of humans. Radar images are generated for different
carrier frequencies and diverse electrical characteristics of the
wall. The narrowband data are processed with short time
Fourier transform across the time domain to obtain
Doppler‐time spectrograms. The wideband data are similarly
processed with Fourier transform across the carrier fre-
quency bandwidth to obtain HRRP. In the second scenario,
we generate range enhanced frontal images of humans using
wideband radar data augmented with two‐dimensional array
processing using an off‐the‐shelf sensor called the Walabot
[48]. All of these images are corrupted by clutter and noise
and the StackedSDAE is evaluated on them. Our results,
across all three types of images, show that the StackedSDAE
can considerably mitigate the clutter and distortions intro-
duced by the walls even with a high labelling mismatch error
and under low SNR.

To summarize, the main contributions are the following.
First, we propose StackedSDAE for mitigating clutter and
distortions introduced by different types of wall phenome-
nology. The framework of the proposed algorithm can be
used to denoise any type of distorted radar signature. Sec-
ond, we have performed experimental validation on three
different types of radar signatures—the Doppler time
spectrogram, the HRRP and the range enhanced frontal
images. For this purpose, we have generated a large database
of these radar signatures in diverse channel conditions and
radar frequencies. The complete database and algorithms are
shared with the research community on the following URL
https://rb.gy/mmhzf6. Third, we have shown that the
proposed algorithm is particularly effective under low SNR
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conditions and when there are large errors in the labelling
of the training data.

The paper is organised in the following manner. In Sec-
tion 2, we discuss the theory of StackedSDAE for clutter
mitigation of radar images. In the subsequent section, we
describe the experimental data generation through simulations
followed by the simulation results in Section 4. In Section 5, we
describe the measurement data collection followed by the
denoising results from the autoencoder. We conclude with the
analysis of the results in the final section.

Notation: Here, we represent scalars and column vectors
by lower case letters and matrices by upper case letters.

2 | THEORY

When radars are operated in highly cluttered environments,
significant distortions arise in the images. The DAE is a neural
network that can be trained to remove the clutter artefacts
from these images. The autoencoder requires both clean and

noisy images while training. In the case of radar, the clean
images correspond to radar images of the target in free space
or some environment free of the clutter artefacts. These are
denoted by X ∈ R

P�Q where P is the pixel size of each of the
Q images. In other words, each image, x, of P pixels is vec-
torised and then Q such images are stacked column‐wise to
generate X. The corrupt data, bX ∈ R

P�Q are corresponding
images of a similar target undertaking a similar motion,
gathered in cluttered environments. In this section, we
describe the DAE and two variants, the sparsity‐based DAE—
termed as SparseDAE—and the sparsity‐based stacked
DAE—termed as StackedSDAE. Our hypothesis is that these
variants will outperform the conventional DAE in clutter
mitigation.

2.1 | Denoising autoencoder

We begin with a description of the conventional/standard
single layer DAE framework, shown in Figure 1a. Here, the

F I GURE 1 (a) Shallow denoising autoencoder and (b) Stacked denoising autoencoder
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algorithm learns a weight matrix, W 1 ∈ R
l�Q, in order to

represent bX
tr
with a compressed Z ∈ R

l�Q through:

Z¼ ϕðW 1 bX
tr
Þ: ð1Þ

The number of nodes, l, in the weight matrix is fewer than
the original pixel size of the image. In the decoder, Z is
mapped back to the reconstructed clean image, eX

tr
through:

eX
tr
¼W2ϕðW 1 bX

tr
Þ; ð2Þ

where W2 is the weighting function. In both the encoder and
decoder, the same activation function ϕ, is used which could
be either linear or a non‐linear. Some of the popular non‐
linear activation functions in literature are hyperbolic
tangent and sigmoid [49, 50]. The objective of the algorithm
is to learn W1 and W2 from the training data such that the

normalised mean square error between Xtr and eX
tr

is mini-
mised as shown in:

min
W 1;W 2

Xtr − W 2ϕðW 1 bX
tr
Þ

�
�
�

�
�
�
2

2
: ð3Þ

Equation (3) is a complex optimization problem which is
NP hard to solve. Therefore, we introduce a proxy variable, Z,
as shown in:

min
W 1;W 2

Xtr − W 2Zk k
2
2 s:t: Z ¼ ϕðW 1 bX

tr
Þ: ð4Þ

Then we relax the equality constraint in the formulation
using an augmented Lagrangian, λ, in:

min
W 1;W 2;Z

Xtr − W 2Zk k
2
2þλ Z − ϕðW 1 bX

tr
Þ

�
�
�

�
�
�
2

2
: ð5Þ

The regularisation parameter, λ, in the above expression
trades off between the error in the encoder (second term) and
the decoder (first term) stages. The above formulation has a
close form solution using an alternating direction method of
multipliers (ADMM) [51]. In the following section, we will
describe the implementation of the ADMM in greater detail.

Once trained, the DAE is ready for test. During test, a
denoised radar image extest is recovered from the DAE with the
test noisy image bxtest as input using Equation (2). The
denoised image should now resemble the ground reference
clean image xtest.

2.2 | Sparse denoising autoencoder
(SparseDAE)

Amodified autoencoder framework can be derived by imposing
additional sparsity constraints on the hidden layer

representations (Z) while learning the weighting matrices in the
encoder and decoder. The objective function in Equation (5) is
modified to:

min
W 1;W 2;Z

Xtr − W 2Zk k
2
2þλ Z − ϕðW 1 bX

tr
Þ

�
�
�

�
�
�
2

2
þμ|Z|1; ð6Þ

where an l1 norm has been imposed on Z through a second
regularisation parameter μ. The objective function is solved
through ADMM by separately solving for W1, W2 and Z
through iterations. First, W1 is obtained from the closed form
least squares solution for:

min
W 1

ϕ−1Z − W 1 bX
tr�

�
�

�
�
�
2

2
: ð7Þ

Then W2 is similarly solved using least squares in:

min
W 2

Xtr − W 2Zk k
2
2: ð8Þ

Then both W1 and W2 are used to solve for Z in:

min
Z

Xtr − W 2Zk k
2
2 þ λ Z − ϕðW 1 bX

tr
Þ

�
�
�

�
�
�
2

2
þ μ Zj j1

¼min
Z

Xtr
ffiffiffi
λ
p

ϕðW 1 bX
tr
Þ

� �

− W 2ffiffiffi
λ
p

I

� �

Z
�
�
�
�

�
�
�
�

2

2
þ μ Zj j1; ð9Þ

using the iterative soft thresholding algorithm (ISTA) [52]. We
update the network weight W1, W2 and proxy variable Z,
iteratively until the algorithm converges.

Once the network is trained, the weight matrices W1 and
W2 are used obtain a denoised form extest of the corrupted test
data bxtest using

extest ¼W 2ϕðW 1bx
test
Þ: ð10Þ

The hypothesis is that when the autoencoder is properly
trained the error after denoising (AD) between extest and xtest,
is lower than the error before denoising (BD) between bxtest

and xtest where xtest is the corresponding ground truth clean
image.

2.3 | Stacked sparse denoising autoencoder

In this framework, the single hidden layer representation
within the autoencoder is converted to multiple stacked layers
as shown in Figure 1b. There is a vast body of research that has
demonstrated that additional deeper layers in a neural network
enable capturing of higher order abstractions in the data
resulting in significant improvement in the performance of the
algorithms. This is because the successive layers result in the
reuse of key features within the images as well as the extraction

4 - RAM ET AL.



of higher order features. The number of layers and the number
of nodes within each layer are typically heuristically chosen. In
our work, we implement the StackedSDAE using three hidden
layers. Therefore, instead of learning just two weighting
matrices as was the case of the shallow DAE, our objective
here is to learn W11, W12, W21 and W22. Each succeeding
deeper layer is characterised by fewer number of nodes. As a
result, the computational time complexity increases during the
training phase since there are greater number of training
matrices to learn. However, the complexity during the test
phase reduces because of the reduced feature dimensions of
the stacked layers.

Again, we divide our denoising problem into the training
and the test stages. During training, the denoising problem can
be formulated as

min
W 11;W 12;W 21;W 22

Xtr − W 22ϕ W 21ϕ W 12ϕ W 11 bX
tr� �� �� ��

�
�

�
�
�
2

2
:

ð11Þ

Again the problem is NP hard since it is non‐convex.
Similar to SparseDAE, we use the variable separation
technique by introducing proxy variables Z2, Z1 and Z0 such
that

Z2 ¼ ϕðW 21Z1Þ ð12Þ

Z1 ¼ ϕðW 12Z0Þ ð13Þ

Z0 ¼ ϕðW 11 bX
tr
Þ ð14Þ

Upon relaxing these constraints with augmented
Lagrangian, the objective function now becomes

min
W 11;W 12;W 21;W 22;Z2;Z1;Z0

Xtr − W 22Z2k k
2
2

þ μ2 Φ−1ðZ2Þ − W 21Z1
�
�

�
�2
2

þ μ1 Φ−1ðZ1Þ − W 12Z0
�
�

�
�2
2

þ μ0 Φ−1ðZ0Þ − W 11 bX
tr�

�
�

�
�
�
2

2
ð15Þ

Again, we use the ADMM technique for solving the above
formulation. We separately solve for W11, W12, W21 and W22,
using closed form expressions for least squares, as shown below

min
W 11

ϕ−1ðZ0Þ − W 11 bX
tr�

�
�

�
�
�
2

2
; ð16Þ

min
W 12

ϕ−1ðZ1Þ − W 12Z0
�
�

�
�2
2; ð17Þ

min
W 21

ϕ−1ðZ2Þ − W 21Z1
�
�

�
�2
2; and ð18Þ

min
W 22

Xtr − W 22Z2k k
2
2: ð19Þ

Then using the ISTA and the weighting matrices, we
solve for Z0, Z1 and Z2 based on the following objective
functions:

min
Z0

ϕ−1Z1 − W 12Z0
�
�

�
�2
2 þ μ0 Z0 − ϕðW 11 bX

tr
Þ

�
�
�

�
�
�
2

2

þ λ0 Zj j1; ð20Þ

min
Z1

μ2 ϕ−1Z2 − W 21Z1
�
�

�
�2
2 þ μ1 Z1 − ϕðW 12Z0Þk k

2
2

þ λ1 Zj j1; and ð21Þ

min
Z2

Xtr − W 22Z2k k
2
2 þ μ2 Z2 − ϕðW 21Z1Þk k

2
2 þ λ2 Zj j1: ð22Þ

Equations (16)–(22) are iterated till the algorithm
converges.

Once the network weights are trained, we use them to
reconstruct extest from the corrupted bxtest by

extest ¼W 22ϕðW 21ϕðW 12ϕðW 11bxtestÞÞÞ: ð23Þ

Note that the Stacked SDAE algorithm is significantly
faster in generating denoised images at the test time as it in-
volves only a simple product operation with reduced feature
dimensions than DAE and Sparse DAE. This makes the al-
gorithm suitable for real‐time applications where training is
usually done apriori.

2.4 | Evaluation metrics

The objective of the DAE and its variants are to reconstruct
radar images that resemble those that would be obtained if the
target were to move in free space conditions. Therefore, one
obvious metric is the normalised mean square error between
the reconstructed image (extest) which is obtained AD and the
ground truth free space image (xtest). However, in the image
processing community, other metrics are preferred to nor-
malised mean square error (NMSE) since NMSE does not
compare the salient features between different images. Here,
we use the structural similarity index (SSIM) which is a popular
metric that assesses luminance, contrast and structural differ-
ences between two images [53]. Its value ranges from 0 to one
where one is obtained when the images are identical. We
calculate SSIM between the cluttered image bxtest and xtest BD.
Then the SSIM is calculated between extest and xtest AD. The
hypothesis, here, is that the SSIM will approach unity AD.

3 | SIMULATION METHODOLOGY

We test the denoising algorithms on indoor radar signatures
obtained in NLOS scenarios where there is both noise and
clutter. We specifically consider the ACR scenario for the
simulations study as described below.
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3.1 | Simulation models

The ACR simulation set up is shown in Figure 2. The elec-
tromagnetic wave propagation from the radar is modelled
using two‐dimensional finite difference time domain (FDTD)
simulations in the XZ space enclosed by a perfectly matched
layer (PML). The simulation space consists of two corridors of
2 m width arranged in a T‐shape as shown in the figure. The
walls are assumed to be 20 cm thick. The simulation space is
discretised to form uniform grid cells that are a tenth of a
wavelength ( λc) of the carrier frequency ( fc). All the regions
outside the walls are assumed to be free space. Stochasticity is
introduced in the electrical characteristics of the walls. Each
grid cell within the wall has a dielectric constant that is drawn
from a normal distribution, N ðϵr; ϵstdr Þ, of mean ϵr and a
standard deviation of ϵstdr . Similarly, the conductivity of each
grid cell is drawn from the normal distribution of N ðσ; σstdÞ.
Therefore, the walls are not truly homogeneous since each
grid cell has slightly different electrical characteristics to model
real‐world conditions. The simulation space is bounded by a
perfectly matched layer that is 2λc thick. The source excitation
which models the monostatic radar is located at (0.5, 0) m.
Two types of source excitation are considered. The first is a
narrowband source modelled as a sinusoidal source of f = fc
frequency. The second is a broadband source excitation
( f ¼ f c ± β

2) which is modelled as a Gaussian signal modulated
by the sinusoidal carrier signal at fc. The width of the Gaussian
signal determines the bandwidth (β) of the source excitation.
The time‐domain simulations are allowed to run long enough
to ensure that steady‐state conditions are reached and the
mean and standard deviation of the time‐domain electric field
at every point in the simulation space are saved [54]. Based on
the normal distribution, multiple realisations (η = 1: M) of the
time‐domain electric field at each two‐dimensional grid posi-
tion, ρ→, are generated. Each of these η electric field vectors are
then transformed using Fourier transform to the frequency

domain and complex responses, Hðρ→; f ; ηÞ, at f ¼ f c ± β
2, are

saved.
Next, we consider the human moving along the tangential

trajectory before the radar, as shown in the figure, over a
duration of T seconds. The human is a three‐dimensional
figure with the height along Y axis. The skeleton framework
of the human and the animation motion of the body parts are
described using motion capture data from Sony [55]. Then the
electromagnetic radar scattering off the human is modelled
using the techniques described in [56]. We briefly describe the
technique here. The human is considered to be a collection of
B discrete point scatterers corresponding to different body
parts each of ab reflectivity. Each of the body parts is modelled
as an ellipsoid whose radar cross‐section (a2b) is obtained with
analytical expressions. The time‐domain radar returns from the
human, corresponding to each η stochastic FDTD realisation
at frequency f, are obtained by

srxðt; f ; ηÞ ¼
XB

b¼1

AabHðρ
→
bðtÞ; f ; ηÞ

2 e−j4π f
c ðrbðtÞ−ρbðtÞÞ;

t ¼ 0 : T ; f ¼ f c � β; η¼ 1 : M: ð24Þ

Here, rb(t) and ρb(t) are the time‐varying three‐ and two‐
dimensional Euclidean distances of the bth point scatterer
from the radar respectively. The two‐way propagation physics
from the radar to the point scatterer is captured by the square of
the wall response H. Since, the FDTD is a two‐dimensional
simulation with an infinite line source excitation, the exponen-
tial phase term in Equation (24) corrects the circular phase front
from the two‐dimensional FDTD propagation physics to the
spherical phase front in the three‐dimensional scenario.A in the
above expression calibrates the amplitude of the FDTD source
excitation to desired radar equivalent isotropic radiated power.

The time‐domain radar data, srx(t, f, η), could be either
narrowband or wideband. In the case of narrow‐band data

F I GURE 2 Simulation model of 6 s long human walking motion in around‐the‐corner radar (ACR) scenario in the presence of 20 cm thick walls with a
dielectric constant of ϵr and conductivity of σ. Wave propagation from the radar source at (0.5,0) m modelled using two‐dimensional full wave electromagnetic
solver. LOS, line‐of‐sight; NLOS, non‐line‐of‐sight
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(where β = 0), the short‐time Fourier transform is applied on
the data to obtain M Doppler spectrograms, xDT, as shown in

xDT ðτ; f D; ηÞ ¼ ∫t srxðt; ηÞwðτ − tÞe−j2πf Dtdt; η¼ 1 : M; ð25Þ

where w(t) is the short time window function. In the case of
the broadband data, Fourier transform is applied across the
bandwidth of the data at every time instant t to obtain M
HRRP, xHRRP, as shown in

xHRRPðt; r; ηÞ ¼ ∫f srxðt; f ; ηÞe
þj2πf 2rc df ; η¼ 1 : M: ð26Þ

3.2 | Simulated radar signatures

3.2.1 | Narrowband Doppler‐time Signatures

The above process is carried out independently for three radar
carrier frequencies ‐fc : 2.4 , 5 and 10 GHz ‐ and the radar
bandwidth is set at 0 Hz. For each of the above cases, we
consider three different types of walls. A wall with low mean
conductivity σ = 0.05 S/m, medium conductivity (σ = 100 S/
m) and high conductivity (σ = 1e5 S/m). The mean dielectric
constant is fixed at ϵr = 4. The standard deviation for both the
dielectric constant and conductivity are fixed at 30%. Twenty
stochastic realisations of the time‐domain electric field are
generated for each of the three cases using the stochastic
FDTD solver. These realisations are combined with the hu-
man walking motion to generate ACR Doppler‐time signa-
tures. A short time window of 0.1 s is used to generate the
spectrograms. The total duration of human motion is 6 s. This
interval is separated into eight consecutive intervals of 0.75 s
duration. The sampling frequency of the time domain data is

500 Hz resulting in Doppler frequency axes spanning from
fD = −250 Hz : + 250 Hz in all the images. Then complex
Gaussian additive noise, N ð0;NpÞ, of Np noise power is
added to each pixel of the images to realize 200 images.
Therefore, we have a total of 1600 images for each of the three
wall cases.

We show the wall propagation effects on the images at
2.4 GHz in Figure 3. The top row on the figure shows the
results generated in free space conditions in the absence of
clutter and noise. These are generated when the human
walks in the presence of radar but without any walls. The
resulting micro‐Doppler spectrograms across eight time in-
tervals from 0 to 6 s are shown. We observe that the
Dopplers are low since the human motion is tangential with
respect to the radar. As the human approaches the radar,
from 0 s to approximately 3 s, the Dopplers are positive.
Then, when the human moves away, the Dopplers become
negative. We observe weak micro‐Doppler returns from the
other body parts. The second row shows the returns when
the human is walking in the presence of low conductive
walls. In this scenario, the walls allow the signal to penetrate
with some attenuation. Hence, the strength of the signals is
weaker. Due to the multipath introduced by the ringing of
the radar signal within the wall, we observe a lot of
multipath. From this figure, it becomes difficult to know
whether there are one or more targets moving and whether
they are coming towards or away from the radar. The third
and fourth row show the micro‐Dopplers from a medium
and a high conductive wall. Due to the lossy nature of the
walls, the through‐wall propagation is blocked. Instead, the
dominant phenomenon here is the reflections off the lateral
walls which give rise to high strengths in the radar scattered
signal. There is a lesser micro‐Doppler spread, in these
cases. However, we do observe some negative Dopplers due

F I GURE 3 Doppler‐time spectrograms of human walking in ACR scenario with monostatic narrowband radar operating at 2.4 GHz. The y‐axis across all
figures shows Doppler frequencies spanning from −250 to +250 Hz. The x‐axis across each figure is of 0.75 s duration with a total time duration of 6 s across
the eight columns. The dynamic range of each figure is from −20 to −70 dB. The first, second, third and fourth rows show the radar signature of human walking
in the free space, low conductive, medium conductive and high conductive wall conditions, respectively. SNR for all figures along the bottom three rows is fixed
at –20 dB. ACR, around‐the‐corner radar; SNR, signal‐to‐noise ratio
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to multipath, even when the target is approaching the radar
(the first few columns).

Next, we present the results for the 5 GHz carrier in
Figure 4. The figures show a slightly lower strength compared
to the results from 2.4 GHz due to the antenna gain offset
between the two frequencies. The higher carrier frequency
results in finer Doppler resolution. As a result, we are able to
discern distinct micro‐Doppler tracks from the different body
parts in the free space scenario, shown in the top row. The low
conductive walls give rise to significant through‐wall propa-
gation resulting in the micro‐Doppler spread and radar signal
attenuation. This results in the low clarity spectrograms in the
second row. Again, the third and fourth row show that the

through‐wall propagation has been blocked. However, multi-
path reflections off the lateral walls give rise to negative
Dopplers even when the target Doppler is positive with respect
to radar.

In the Doppler‐time spectrograms corresponding to
10 GHz, in Figure 5, we observe well resolved micro‐Doppler
tracks from the different body parts in the free space scenario.
Due to the low sampling frequency, we also observe some
aliasing at negative frequencies even for the free space scenario
(first few figures along top row). The wall distortions are again
considerable due to both through‐wall propagation effects (for
low conductive walls) and multipath off lateral walls (for the
high conductive walls).

F I GURE 4 Doppler‐time spectrograms of human walking in the ACR scenario with monostatic narrowband radar operating at 5 GHz. The y‐axis across all
figures shows Doppler frequencies spanning from −250 to +250 Hz. The x‐axis across each figure is of 0.75 s duration with a total time duration of 6 s across
the eight columns. The dynamic range of each figure is from −20 to –70 dB. The first, second, third and fourth rows show the radar signature of human walking
in free space, low conductive, medium conductive and high conductive wall conditions, respectively. SNR for all figures along the bottom three rows is fixed at –
20 dB. ACR, around‐the‐corner radar; SNR, signal‐to‐noise ratio

F I GURE 5 Doppler‐time spectrograms of human walking in ACR scenario with monostatic narrowband radar operating at 10 GHz. Again, the signals are
weaker here due to the antenna gain offset. The y‐axis across all figures shows Doppler frequencies spanning from −250 to +250 Hz. The x‐axis across each
figure is of 0.75 s duration with a total time duration of 6 s across the eight columns. The dynamic range of each figure is from −20 to −70 dB. The first, second,
third and fourth rows show the radar signature of human walking in free space, low conductive, medium conductive and high conductive wall conditions,
respectively. SNR for all figures along the bottom three rows is fixed at –20 dB. ACR, around‐the‐corner radar; SNR, signal‐to‐noise ratio
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3.2.2 | Broadband Doppler‐time Signatures

We simulated broadband radar data of 2 GHz bandwidth about
the three carrier frequencies using the FDTD solver. This re-
sults in a range resolution of 0.075 m and the maximum un-
ambiguous range, based on the frequency step size, is 10 m.
Complex Gaussian noise was added to the pixels of the resulting
HRRP images and a total of 1600 images were generated for
each wall type. We first discuss the HRRP obtained at 2.4 GHz
in Figure 6. Again, the total duration of the target motion is 6 s
and is divided into eight intervals of 0.75 s each. The top row
shows the target motion in free space conditions (in the absence
of walls). We observe the range of the target changing only

slightly as the human is moving tangentially across the radar's
field‐of‐view. We are able to observe fine micro‐range tracks
arising from the motion of the limbs. However, the images
significantly deteriorate in the presence of the walls due to
multipath. In the case of the low conductive wall (second row),
the ringing of the signal through the wall gives rise to multipath
but also attenuates the radar signal. For high, conductive walls,
the multipath arises due to reflections off the lateral walls which
cause the radar received signal strength to increase. We also
observe considerable aliasing in these scenarios.

Similar phenomena are observed in the HRRP for 5 and
10 GHz, which are shown in Figures 7 and 8. Again, the top row
in both these figures shows the HRRP when the human is

F I GURE 6 High‐range resolution profile of human walking in the ACR scenario with monostatic narrowband radar operating at 2.4 GHz. The y‐axis
across all figures shows a range spanning from 0 to 10 m. The x‐axis across each figure is of 0.75 s duration with a total time duration of 6 s across the eight
columns. The dynamic range of each figure is from −30 to −70 dB. The first, second, third and fourth rows show the radar signature of human walking in free
space, low conductive, medium conductive and high conductive wall conditions, respectively. SNR for all figures along the bottom three rows is fixed at –20 dB.
ACR, around‐the‐corner radar; SNR, signal‐to‐noise ratio

F I GURE 7 High‐range resolution profile of human walking in the ACR scenario with monostatic narrowband radar operating at 5 GHz. The y‐axis across
all figures shows range spanning from 0 to 10 m. The x‐axis across each figure is of 0.75 s duration with a total time duration of 6 s across the eight columns. The
dynamic range of each figure is from −40 to −80 dB. The first, second, third and fourth rows show the radar signature of human walking in free space, low
conductive, medium conductive and high conductive wall conditions, respectively. SNR for all figures along the bottom three rows is fixed at –20 dB. ACR,
around‐the‐corner radar; SNR, signal‐to‐noise ratio
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walking in free space conditions where there are no walls and no
noise. The second, third and fourth rows show the results when
the walls are of low, medium and high conductivity respectively.
The HRRP show a lot of similarity across the three carrier fre-
quencies. This is mainly because the HRRP features are a
function of the range resolution and the bandwidth of the radar
which are identical across the three cases. The results from
10 GHz show the greatest distortions and clutter.

4 | SIMULATION RESULTS AND
ANALYSIS

In this section, we compare the similarity of the denoised/
reconstructed images obtained from DAE, SparseDAE and
StackedSDAE with respect to the clean ground truth images
through the SSIM metric. The performances are evaluated for
both types of radar signatures—the Doppler‐time spectrograms
and the HRRP— that were discussed above. We consider two
parameters for comparison— the labelling mismatch error and
the SNR, which is the ratio of the minimum signal receivable by
the radar to themean noise floor. In real‐world conditions, itmay
be impossible to exactly replicate a target motion in free space
and ACR conditions during training. Therefore, the training data
may have a significant mismatch between the clean Xtr and the
noisy and cluttered bX

tr
.Wemodel this training error by shuffling

the row entries of each column of Xtr such that they no longer
exactly correspond to the entries in bX

tr
.We used 70%of the total

images as the training data set, and the remaining 30% as the test
data set. We present the convergence of the objective function
shown in equation (5) with the number of iterations in Figure 9.
We then change the labelling mismatch error percentage from
0% to 60% by changing the degree of shuffling. Next, we change
the SNR of the images from −15 to + 20 dB by changing the
Gaussian noise powerNp that is added to each pixel of the image.

4.1 | Time‐frequency spectrograms

Figure 10 shows the results of the three algorithms for different
labelling mismatch errors across the three carrier frequencies at
SNR of −10 dB. In each case, the SSIM AD for all three
algorithms—DAE, SparseDAE and StackedSDAE—are
significantly improved when compared to the noisy and clut-
tered images BD. As the label mismatch error increases, the
SSIM for all three algorithms fall. However, the fall ismuch lower
for the StackedSDAE. Even with a 50% labelling mismatch er-
ror, the SSIM of the reconstructed images is at 0.8 at 2.4 GHz
(Figure 10a) and 5 GHz (Figure 10b). However, the 10 GHz
scenario is a far more challenging case, where we observed a lot
of multipath from lateral walls and weaker signals due to antenna
gain offset. However, even here, the SSIM of the StackedSDAE
is better than the SparseDAE and DAE at high labelling errors.

F I GURE 8 High‐range resolution profile of human walking in the ACR scenario with monostatic narrowband radar operating at 10 GHz. The y‐axis across
all figures shows the range spanning from 0 to 10 m. The x‐axis across each figure is of 0.75 s duration with a total time duration of 6 s across the eight columns.
The dynamic range of each figure is from −50 to −90 dB. The first, second, third and fourth rows show the radar signature of human walking in free space, low
conductive, medium conductive and high conductive wall conditions, respectively. SNR for all figures along bottom three rows is fixed at –20 dB. ACR, around‐
the‐corner radar; SNR, signal‐to‐noise ratio

F I GURE 9 Convergence curve of the objective function for the
denoising algorithm for a fixed SNR of 0 dB. SNR, signal‐to‐noise ratio
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Next, we consider the effect of SNR on the three algo-
rithms in Figure 11. Again, there is a significant improvement
in the SSIM AD for all three algorithms across all three fre-
quencies. We observe that both the SparseDAE and the
StackedSDAE are more robust to noise than DAE at low
SNRs (from −15 to 5 dB) at 2.4 GHz (Figure 11a) and 5 GHz
(Figure 11b). These results indicate that the use of sparsity
constraints in the hidden layer representations results in
increased robustness of the algorithm to Gaussian noise.
Additional stacking layers also benefit for slightly higher SNR
values. However, at very low SNR values (< −10 dB), in
Figure 11c corresponding to 10 GHz radar frequency, addi-
tional stacking layers may be required to retain the robustness
of the algorithm. The performance here is poorer due to
weaker radar signals at 10 GHz due to the gain offset.

4.2 | High resolution range profiles

Next, we study the performance of the three algorithms on the
HRRPs. First, we consider the label mismatch error in
Figure 12 for the three carrier frequencies when SNR
is −10 dB. Again, we observe that all three algorithms result in
an increase in the SSIM AD compared to the SSIM of the
cluttered image BD. As the labelling mismatch error increases,
the SSIM falls for all three algorithms across the three

frequencies. However, the SSIM fall of the StackedSDAE is far
less than DAE and SparseDAE and is at 0.75 even when the
label mismatch is 50% for 2.4 GHz (Figure 12a) and 5 GHz
Figure 12b. The denoising performances for all three algo-
rithms are however significantly poorer at 10 GHz possibly
because of the greater multipath and weaker signal strength.
Similar trends are observed when we compare the perfor-
mance of the three algorithms for varying SNR in Figure 13.

Both SparseDAE and StackedDAE are more robust than
DAE at low SNR values for 2.4 GHz (Figure 13a) and 5 GHz
(Figure 13b). But StackedSDAE deteriorates significantly at
extremely low SNR for 10 GHz (Figure 13c) below −10 dB,
due to the weaker signal strength, indicating that we may need
greater depth in the hidden layers of the autoencoder.

5 | MEASUREMENT RESULTS

5.1 | Measurement data collection

In the previous sections, we demonstrated the effectiveness of
the SparseDAE and StackedSDAE in denoising spectrograms
and HRRPs generated in the ACR scenarios. However, these
algorithms are essentially suited for denoising any type of
radar signature. To support this claim, we evaluate these al-
gorithms on a third type of radar signature––the range

F I GURE 1 0 SSIM variation for spectrograms with respect to label mismatch percentage at: (a) 2.4 GHz, (b) 5 GHz and (c) 10 GHz respectively for fixed
SNR of −10 dB. AD, after denoising; BD, before denoising; DAE, denoising autoencoder; SNR, signal‐to‐noise ratio; SSIM, structural similarity index

F I GURE 1 1 SSIM variation for spectrograms with respect to SNR at: (a) 2.4 GHz, (b) 5 GHz and (c) 10 GHz respectively for a fixed labelling error of
20%. AD, after denoising; BD, before denoising; DAE, denoising autoencoder; SNR, signal‐to‐noise ratio; SSIM, structural similarity index
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enhanced frontal images. These images are generated by
processing wideband measurement data from 3.3 to 10.3 GHz
captured using an imaging sensor called Walabot Pro [48]. This
is an uncalibrated sensor that consists of a 4 � 4 antenna array
with a maximum detectable range of about 4 m in LOS
conditions and a field‐of‐view of approximately 90° across
azimuth and elevation. The radar data cube is processed
through a three‐dimensional Fourier transform. Then the
peaks across the range domain are superposed to obtain
range‐enhanced frontal images of targets. The experimental
setup for our measurement data collection is shown in
Figure 14. The DAE and its variants are trained with clean
images of a slow‐moving human subject at 2 m gathered in
LOS environments and the corresponding cluttered images.
The subject carries two boxes covered with aluminium tape to
enhance the reflectivity from the hands.

Figure 15a shows the frontal radar image of the subject in
LOS conditions where the torso, legs and arms of the human
are noticeable. The experiments are performed on five subjects
of different heights and girth. For each of these subjects, we
captured 90 measurements at different orientations with
respect to the sensor.

Due to the low transmitted power and limited dynamic
range, the Walabot cannot be used in typical Indian through‐
wall scenarios (20 cm brick walls). Instead, we synthetically

corrupted the radar images with three types of distortions—
additive Gaussian noise (of SNR from 0 to 30 dB), clutter,
and labelling errors. We modelled the clutter as a collection of
discrete point scatterers randomly distributed across the radar's

F I GURE 1 2 SSIM variation for HRRPs with respect to the label mismatch percentage at (a) 2.4 GHz, (b) 5 GHz and (c) 10 GHz respectively, for fixed
SNR of −10 dB. AD, after denoising; BD, before denoising; DAE, denoising autoencoder; HRRP, high range resolution profiles; SNR, signal‐to‐noise ratio;
SSIM, structural similarity index

F I GURE 1 3 SSIM variation for HRRPs with respect to SNR at: (a) 2.4 GHz, (b) 5 GHz, and (c) 10 GHz respectively for a fixed labelling error of 20%. AD,
after denoising; BD, before denoising; DAE, denoising autoencoder; HRRP, high range resolution profiles; SNR, signal‐to‐noise ratio; SSIM, structural similarity
index

F I GURE 1 4 Measurement setup of frontal imaging of a slow‐moving
human by Walabot

12 - RAM ET AL.



field‐of‐view whose magnitudes were varied to obtain signal to
clutter ratios (SCR) spanning from 0 to 30 dB. The phase of
each scatterer followed a uniform distribution across 360°.
Using Binomial distribution and a probability of false alarms of
0.06, we obtain approximately five false alarms for each image.
We generated the cluttered images by the complex sum of the
measurement, and clutter signals. An example of the distor-
tions introduced to the frontal image by clutter signals is
shown in Figure 15b where we observe ghost targets.

We introduced labelling mismatch errors by shuffling a
proportion of the labels of the clean images so that they did
not correspond correctly to the corrupted images. Each of the
31 � 31 pixel images were vectorised. Then the images are
stacked column‐wise to obtain a [961 � 450] matrix. The data
is then split into a training set (80%) and test set (20%).

5.2 | Results and analyses

The training and testing of the algorithms are carried out in
Matlab 2018b on Intel(R) Core(TM) i7‐5500 processor with
16‐GB Ram running at 2.40 GHz. We present the results of
the conventional DAE and its two variants—SparseDAE and

StackedSDAE in Figure 16. In all the results, we present the
SSIM between the corrupted and ground truth reference clean
image BD and the SSIM between the reconstructed image and
clean image AD. We observe a significant improvement in the
SSIM AD for all three algorithms in all of the cases.

First, we study the effect of SNR on the denoising per-
formance in Figure 16a. We observe that as the SNR decreases,
the SSIM degrades significantly for conventional DAE. How-
ever, both SparseDAE and StackedSDAE are robust to noise
since the performance does not significantly deteriorate with a
fall in SNR.

The DAE is, however, less sensitive to low SCR values as
observed in Figure 16b. The SparseDAE deteriorates slightly
but the StackedSDAE does not get significantly impacted by
low SCR values. The SSIM falls with an increase in labelling
error in Figure 16c. However, the SparseDAE and Stack-
edSDAE are less sensitive than the conventional DAE. Finally,
we examine the sensitivity of the algorithms' performance to
the number of nodes in the hidden layer in Figure 16d. We
observe that the performance of all three algorithms converges
with an increase in the number of nodes. The StackedSDAE,
however, converges for the fewest number of nodes. The al-
gorithms require a minimum number of nodes in the hidden

F I GURE 1 5 Measured range enhanced frontal images of a slow‐moving human: (a) line‐of‐sight clean image, (b) cluttered image with SCR = 0 dB, (c),(d)
reconstructed radar images after denoising for hidden layer dimensions l1 = 100, and l2 = 500 respectively. SCR, signal‐to‐clutter ratio
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layers to achieve maximum improvement. The number of
nodes is an important metric that determines the computa-
tional complexity (both time and memory) of the algorithm.

We compare the computational time complexity of the
three algorithms during training and test in Table 1. While the
training time of DAE and SparseDAE are comparable,
the StackedSDAE takes more than twice as long to train. This
is because the incorporation of stacked hidden layers results in
training requirements of additional weighting matrices in the
hidden layers. However, due to the feature size reduction in
these matrices, there is considerably lower computation time
for the StackedSDAE during the test. As a result, the Stack-
edSDAE may be more suitable for real‐time operations.

6 | BENCHMARKING WITH OTHER
ALGORITHMS

We compare the performance of our algorithm, qualitatively
and quantitatively, with subspace filtering based on singular
value decomposition (SVD) and wavelet filtering.

6.1 | Subspace filtering

We have used subspace filtering methods presented in [57] to
denoise the simulated time‐domain data used to generate the
ACR spectrograms. Using SVD, we identify the eigenvalues of
the data. The top few singular vectors belong to the signal
while the remaining constitute the noise subspace. Then, we
reconstruct denoised spectrograms after removing the distor-
tions arising from the lower eigenvalues. Since, the multipath
clutter, in our scenario, are directly dependent on the target,
they do not occupy orthogonal subspaces to the target

F I GURE 1 6 SSIM variation with respect to: (a) SNR, (b) SCR, (c) labelling mismatch error during training stage and (d) the number of nodes in the hidden
layer. AD, after denoising; BD, before denoising; DAE, denoising autoencoder; SCR, signal to clutter ratio; SNR, signal‐to‐noise ratio; SSIM, structural similarity
index

TABLE 1 Computational time complexity of DAE and its variants

Algorithm Training time (s) Test time (ms)

DAE 205.3 76

SparseDAE 228.3 66

StackedSDAE 466.3 0.7

Abbreviation: DAE, denoising autoencoder.
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subspace. The results presented in Figure 17 clearly indicate
that the SVD‐based approach removes the noise but not the
multipath distortions introduced in the ACR scenario, which
are observed at negative Dopplers.

6.1.1 | Wavelet filtering

Next, we use wavelet‐based techniques for denoising the im-
ages. We apply discrete wavelet transform on the raw time‐
domain data. Again, we assume that the signal returns
occupy the top wavelet coefficients while the remaining co-
efficients correspond to the noise and distortions. Therefore,
we convert these coefficients to zero and then apply inverse
discrete wavelet transform to reconstruct the denoised images.
The resulting images in Figure 17 again show that the algo-
rithm is successful in removing the independent noise but not
the target‐dependent multipath distortions. In contrast, the
proposed method based on autoencoders removes both the
noise and the multipath clutter (negative Dopplers).

In Table 2, we quantitatively compare the performances of
the three algorithms. We observe that BD, the average SSIM
between the noisy ACR signatures and the free space signa-
tures is 0.05 and the NMSE is 0.22. AD, the SSIM for SVD
and wavelet filtering improve slightly by removing noise.
However, the images still look different from the free space
images due to the presence of the clutter. On the other hand,
the proposed methods using autoencoders result in high SSIM
(above 0.9) and a low NMSE (0.01) since they succeed in
removing both noise and clutter‐based distortions.

7 | CONCLUSION

Indoor radar signatures of dynamic human motions are cor-
rupted by target‐dependent and target‐independent static and
dynamic clutter introduced by the presence of walls and other
reflecting surfaces. We have used a variant of DAE, called the
StackedSDAE, that incorporates both sparsity and depth in the
hidden layer representations of the noisy images for clutter
mitigation. The encoder and decoder stages of the algorithm
are trained with labelled clean and noisy data. No additional
information of the wall geometry or characteristics are required
for the algorithm. Due to the additional stacked layers within
the hidden layers, the training time for this algorithm is greater
than that of the conventional DAE. However, each additional
stacked layer has fewer nodes than the previous layer. This
results in lowered feature size of the final representation and
lower test time operation. The resulting denoised images are

F I GURE 1 7 Spectrograms of humans in (a) freespace, (b) ACR scenarios. Denoised images obtained using (c) wavelet filtering, (d) subspace filtering using
SVD and (e) proposed methods using sparsity‐based autoencoders. ACR, around‐the‐corner radar; SVD, singular value decomposition

TABLE 2 Quantitative comparison of the denoising performance by
subspace filtering with SVD, wavelet filtering and proposed method using
autoencoders

Method SSIM (BD) SSIM (AD) NMSE (BD) NMSE (AD)

SVD 0.05 0.06 0.22 0.1

Wavelets 0.05 0.08 0.22 0.11

StackedSDAE 0.05 0.92 0.22 0.01

Abbreviations: AD, after denoising; BD, before denoising; DAE, denoising
autoencoder; NMSE, normalised mean square error; SSIM, structural similarity index;
SVD, singular value decomposition.
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structurally similar to the radar images of the target that would
have been obtained in free space scenarios. The StackedSDAE
is more robust than the conventional DAE to labelling
mismatch error between clean and noisy images during
training. The algorithm is also more robust to low SNR (−10
to +5 dB) than the conventional DAE. For example, in the
case of the simulated ACR signatures, the denoised images
have an SSIM above 0.75 even when the SNR is −10 dB
and the label mismatch error is 50%. At extremely low SNR
(below −0 dB), we observe some deterioration in the perfor-
mance possibly indicating that greater number of hidden layers
are required at these SNRs. The complete database of radar
signatures and algorithms are shared with the research com-
munity on the following URL https://rb.gy/mmhzf6.
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