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Abstract— Radar images of humans and other concealed
objects are considerably distorted by attenuation, refraction,
and multipath clutter in indoor through-wall environments.
Although several methods have been proposed for removing
target-independent static and dynamic clutter, there still remain
considerable challenges in mitigating target-dependent clutter
especially when the knowledge of the exact propagation char-
acteristics or analytical framework is unavailable. In this article,
we focus on mitigating wall effects using a machine learning-
based solution—denoising autoencoders—that does not require
prior information of the wall parameters or room geometry.
Instead, the method relies on the availability of a large volume
of training radar images gathered in through-wall conditions
and the corresponding clean images captured in line-of-sight
conditions. During the training phase, the autoencoder learns
how to denoise the corrupted through-wall images in order
to resemble the free space images. We have validated the
performance of the proposed solution for both static and dynamic
human subjects. The frontal radar images of static targets are
obtained by processing wideband planar array measurement data
with 2-D array and range processing. The frontal radar images
of dynamic targets are simulated using narrowband planar
array data processed with 2-D array and Doppler processing.
In both simulation and measurement processes, we incorporate
considerable diversity in the target and propagation conditions.
Our experimental results, from both simulation and measurement
data, show that the denoised images are considerably more
similar to the free-space images when compared to the original
through-wall images.

Index Terms— Denoising autoencoders, Doppler/range-
enhanced frontal imaging, stochastic finite difference time-
domain (sFDTD), through-wall radar.

I. INTRODUCTION

THROUGH-THE-WALL radar imaging (TWRI) has been
extensively researched in recent years, for detecting and

monitoring humans and other concealed objects in urban
environments. There are varied applications for TWRI such
as law enforcement, security, and surveillance, search and
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rescue, and indoor monitoring of the elderly [1]–[5]. There are
broadly two categories of through-the-wall radars: narrowband
and broadband. Broadband radars provide excellent downrange
resolutions to locate and resolve multiple targets as well
as for estimating building layouts [6]. Alternately, narrow
band continuous wave (CW) radars have been developed to
detect dynamic targets based on their Doppler signatures [2],
[3], [7]. Both of these systems can be complemented with
2-D array processing to provide either range-enhanced frontal
images or Doppler-enhanced frontal images [8], [9]. Frontal
images of the humans provide informative signatures of their
activities [10]. However, when the radars are deployed in
through-wall scenarios, the quality of the radar images sig-
nificantly deteriorates due to the through-wall propagation
artifacts such as—attenuation, defocussing, and multipath
clutter [3], [8], [11]–[13].

Indoor clutter can be broadly categorized into target-
independent static and dynamic clutter, and target-dependent
clutter. Target-independent static clutter arises from the reflec-
tions off the wall (especially the front face in a through-wall
scenario), ceiling, floor, and furniture. When the objective
is to detect dynamic targets, static clutter is easy to elim-
inate by filtering. The problem becomes more challenging
in the context of the detection of static and slow-moving
targets. Ahmad and Amin [14] assumed the availability of
background data that could be coherently subtracted from
the target measurements. Alternately, sparsity-based multi-
path exploitation methods were explored in [15]–[17]. Here,
the algorithm leveraged the orthogonality between the static
clutter and the target scattering to mitigate the clutter. Target-
independent dynamic clutter arising from other moving objects
in the environment can significantly interfere with Doppler
signatures of moving targets. In [18], a method to segregate
the Doppler returns from multiple targets was presented. This
technique could be used for mitigating dynamic clutter. The
third category is target-dependent clutter that arises from
the interactions of the target (static or dynamic) and the
complex propagation channel. As a result of refraction and
multipath, the radar images are smeared, blurred, and there
are shifts in the location of point scatterers in the images [8].
Martone et al. [19] and Ahmad and Amin [20] used backpro-
jection and sparsity-based change detection algorithms, respec-
tively, to track slow-moving humans in the range–crossrange
space in the presence of target-dependent clutter. Both these
techniques, however, rely on the availability of accurate knowl-
edge of the through-wall scenarios for detecting static targets.
Alternately, Setlur et al. [21], [22] exploited the multipath
(instead of suppressing the multipath) to improve the effective
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signal-to-clutter ratio (SCR) at the original target locations.
They removed ghost artifacts by mapping the multipath ghosts
to their true targets. Again the technique requires exact infor-
mation of the room geometry and wall characteristics.

In this article, we propose an alternate strategy, based on
denoising autoencoders, for recovering radar images corrupted
by through-wall effects. An autoencoder is a neural network
that extracts relevant features from the noisy input data
for various tasks such as dimensionality reduction and data
denoising [23], [24]. Autoencoders have been widely used
for applications such as anomaly detection, natural language
processing, denoising, and domain adaptation [23], [25]–[27].
Some preliminary results for clutter mitigation using autoen-
coders were presented in [28] where the nature of the type of
through-wall scenario was assumed to be known during the test
phase. The primary advantage of this technique is, however,
that the autoencoders require neither prior information regard-
ing the wall characteristics nor any kind of analytic framework
to describe the through-wall interference. Instead, the distorted
radar signatures due to wall interference are treated as corrupt
versions of ideal radar signatures obtained in free space
conditions. The algorithm learns how to denoise or clean
the corrupted signals using training data comprising both
corrupted and clean data. We demonstrate, in this article, that
the autoencoder can be used for removing signal-dependent
clutter when no information or label of the through-wall
scenario is assumed to be known during the test phase. Instead,
the autoencoder is trained with a mixture of images gathered in
diverse through-wall conditions. Traditional autoencoders have
been implemented using backpropagation algorithms such as-
gradient descent [29], conjugate gradient descent [30], and
steepest descent [24]. However, they have a very slow learning
rate. This translates to long training times and, in some cases,
the convergence may not be guaranteed. Instead, we propose to
use an alternating direction method of multipliers (ADMMs)
approach [31], where we break the complex convex opti-
mization problem into smaller subproblems with closed-form
solutions. Thus, the convergence is guaranteed and training
times are not very long.

We test the performance of the proposed algorithm on
two types of radar images–Doppler enhanced and range-
enhanced frontal images. The Doppler-enhanced frontal
images of dynamic human motions are generated from simu-
lated narrowband radar data of human motions in through-wall
environments using the techniques described in [8] and [9].
We consider a variety of walls-a dielectric wall, a dielec-
tric wall with metal reinforcements and one with air gaps.
The through-wall propagation phenomenology is modeled
using finite difference time-domain (FDTD) techniques [32].
We introduce significant diversity in wall parameters such as
dielectric constant and conductivity by incorporating stochas-
ticity in the finite difference equations as suggested by Smith
and Furse [33]. This is a computationally more efficient tech-
nique than running multiple FDTD simulations with varying
wall parameters. The second set of images is range-enhanced
frontal images captured of static humans using measurement
data gathered with Walabot, a 3-D programmable, wideband
imaging radar [34]. During the training phase, the autoencoder

Fig. 1. Denoising autoencoder.

is trained with a diverse mixture of data gathered from
different through-wall scenarios. In the test phase, the network
denoises the corrupted radar image without requiring any
information on the type of wall or its parameters. Both
the simulation and measurement results obtained from the
autoencoder exhibit very low normalized mean square error
(NMSE) and high structural similarity between the denoised
reconstructed images and free space images.

To summarize, our contributions in this article are as
follows.

1) First, we propose a denoising autoencoder to mitigate
clutter and distortion in through-wall frontal images of
both static and dynamic humans.

2) Second, we propose a method to implement the autoen-
coder using the ADMM approach to ensure convergence
and fast training times.

In Section II, we briefly describe the denoising autoencoder
structure implemented in our work. Then, in Section III,
we use a computationally efficient method based on stochastic
FDTD (sFDTD) to simulate narrowband Doppler-enhanced
frontal images of dynamic humans. We present the simulation
results where we declutter Doppler-enhanced frontal images
of a human subject in Section IV. Finally, we denoise range-
enhanced through-wall radar images of static humans captured
by a wideband RF sensor, Walabot, in Section V. We present
the results, analyses, and discussion on the strengths and
limitations of the proposed approach in the final section .

Notation: We use the following notation in the article.
Matrices are written in capital bold letters, whereas vectors
and variables are written in normal letters.

II. THEORY

Radar images deteriorate significantly due to distortions and
multipath clutter signals introduced by through-wall environ-
ments. The images may be defocused, blurred, or smeared.
Ghost targets may appear due to multipath. The objective,
here, is to reconstruct clean radar images resembling free
space images from corrupted through-wall images. We divide
our denoising problem into two stages—training and the test
stages.

A. Training Stage

A conventional denoising autoencoder shown in Fig. 1, first,
corrupts the clean input data by adding stochastic Gaussian
noise, then feeds the corresponding noisy version as input data
to the next stage. In this article, we consider the measurements
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in a through-wall case as our noisy/corrupted data. The main
difference is the non-Gaussian nature of interference. During
the training stage, M radar images of the target are captured
in free space. We vectorize each image of size �I×J to obtain
y tr ∈ �N×1 where N = I × J is the total number of
pixels in an image. We stack the M images as columns to
form a data matrix Ytr ∈ �N×M . We repeat this exercise
for the images captured in the corresponding through-wall
scenarios to generate Ŷ

tr
also of size �N×M . The autoencoder

has primarily two stages—encoding and the decoding. In the
encoding stage, the algorithm learns a latent/compressed rep-
resentation Z ∈ �r×M , of the input layer Ŷ

tr
as shown in (1)

Z = φ
�
W1Ŷ

tr�
. (1)

Here, φ is the mapping function which can either be lin-
ear or nonlinear (such as sigmoid, tanh), W1 ∈ �R×N is the
corresponding weight matrix, and R is the number of nodes in
the hidden layer. Since the hidden layer, Z, is the compressed
representation of the input layer, Ŷ

tr
, it always has fewer nodes

than the number of pixels (R � N). In the decoding stage,
the algorithm maps Z back to obtain a reconstructed signal
Ỹ

tr = W2φ(W1Ŷ) through weight matrix W2 ∈ �N×R such
that the error e

e = �
� Ytr − Ỹ

tr �� 2
2 (2)

between the reconstructed images and the free space images
is minimized. Therefore, the objective in the training stage is
to learn weight matrices W1 and W2 so that the reconstructed
images resemble free space images (instead of the corrupted
through-wall images)

J (W1, W2) = min
W1,W2

�
� Ytr − W2φ

�
W1Ŷ

tr � �
� 2

2. (3)

The objective function (3) can be solved in multiple
ways—gradient descent, conjugate gradient descent, or steep-
est descent. In some of these ways, the error may become
insignificant when backpropagated. Additionally, these algo-
rithms have a very slow learning rate. Instead, we propose an
ADMM approach [31]. Here, we introduce a simple variable
separation technique to break the complex convex optimization
problem into smaller subproblems which have closed form
solutions such that the convergence is guaranteed. The objec-
tive function in (3) is reformulated to

J (W1, W2)= min
W1,W2

�
� Ytr −W2Z

�
� 2

2 s.t. Z = φ
�
W1Ŷ

tr �
.

(4)

Since the formulation in (4) is a constrained optimization
problem, we relax it using an augmented Lagrangian technique
shown below

J (W1, W2, Z)= min
W1,W2,Z

�
� Ytr −W2Z

�
� 2

2+μT
�
Z−φ

�
W1Ŷ

tr ��

+λ
�
� Z − φ

�
W1Ŷ

tr� �
� 2

2. (5)

Here, the Lagrangian term μT (Z−φ(W1Ŷ
tr
)) imposes equal-

ity between Z and the underlying representation φ(W1Ŷ
tr
)

at every iteration, whereas the augmented Lagrangian term
λ�Z − φ(W1Ŷ

tr
)�2

2 is minimized over successive iterations

and hence, ensures the equality only during convergence.
We do not require the stringent equality constraint at every
iteration and hence, ignore the Lagrangian term and reformu-
late the objective function as shown in

J (W1, W2, Z)= min
W1,W2,Z

�
� Ytr −W2Z

�
� 2

2+λ
�
� Z−φ

�
W1Ŷ

tr � �
� 2

2.

(6)

Here, λ is the regularization parameter between the proxy
variable Z and underlying representation φ(W1Ŷ

tr
). We divide

(6) into a set of smaller subproblems as follows.
Problem 1

J (W1) = min
W1

λ
�
� φ−1Z − W1Ŷ

tr �� 2
2. (7)

Problem 2

J (W2) = min
W2

�
� Ytr − W2Z

�
� 2

2. (8)

Problem 3

J (Z) = min
Z

�
� Ytr − W2Z

�
� 2

2 + λ
�
� Z − φ

�
W1Ŷ

tr� �
� 2

2

= min
Z

�
�
�
�

�
Ytr

√
λφ

�
W1Ŷ

tr�
�

−
�

W2√
λI

�
Z

�
�
�
�

2

2

. (9)

Subproblems in (7)–(9) are all simple least squares problems
which already have a closed-form solution [35]. At each
iteration, we update the network weight W1, W2, and proxy
variable Z, till the algorithm converges.

B. Test Stage

During test stage, P-corrupted radar images are combined
together to form Ŷ

test ∈ �N×P and passed through the
autoencoder to obtain Ỹ ∈ �N×P . We hypothesize that once
the network is trained, we can use weight matrices W1 and
W2 to obtain a denoised form Ỹ

test
of the corrupted test data

Ŷ
test

as shown in Fig. 2(b)

Ỹ
test = W2φ

�
W1Ŷ

test�
. (10)

Note that the proposed denoising algorithm is significantly
faster in generating denoised images at test time as it involves
only a simple product operation in (10). This makes the
algorithm suitable for real-time applications.

C. Metrics for Evaluation

We evaluate the effectiveness of the proposed clutter mit-
igation algorithm using two metrics- NMSEs and structural
similarity index (SSIM). We consider the image captured in
free space as the clean/ground truth image (Ytest). We calcu-
late the NMSE and SSIM between the through-wall image
Ŷ

test
and ground-truth image before denoising (BD). Then

we repeat the exercise after denoising (AD). In the sec-
ond case, the NMSE and SSIM are calculated between the
reconstructed/denoised image, Ỹ

test
, and the ground truth

image. The hypothesis, here, is that the NMSE and SSIM will
improve AD.
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Fig. 2. (a) During training stage, the autoencoder learns coefficients W1
and W2 from clean free space images (Ytr) and corrupted through-wall
(Ŷ

tr
) images. (b) During test phase, corrupted through-wall images (Ŷ

test
)

are denoised to obtain reconstructed images that resemble free space radar
images (Ytest ).

The NMSE is computed between Ytest and Ŷ
test

using the
following equation:

NMSE =
�
� Ytest − Ŷ

test�� 2
2�

� Ytest
�
� 2

2

. (11)

NMSE is sensitive to the energy of absolute errors of all the
pixels of an image. However, NMSE between two images
may be low even if they have drastically different structural
features [36]. SSIM [37], on the other hand, is a metric that
provides information of the luminance (L), contrast (C), and
structure difference (S), between the ground-truth image Y test

and the test image Ŷ test. Its value should be 1 if the images
are identical. The overall measurement metric becomes the
multiplicative combination of three measures shown in the
following equation:

SSIM
�
Ŷ, Y

� = �
L

�
Ŷ, Y

�� α �
C

�
Ŷ, Y

�� β �
S
�
Ŷ, Y

�� γ
. (12)

We assume α = β = γ = 1. The expressions for L, C, S are

L
�
Ŷ, Y

� = 2μŶ μY + C1

μ2
Ŷ

+ μ2
Y + C1

(13)

C
�
Ŷ, Y

� = 2σŶ σY + C2

σ 2
Ŷ

+ σ 2
Y + C2

(14)

S
�
Ŷ, Y

� = σŶ Y + C3

σŶ σY + C3
. (15)

Here, μY , μŶ , σY , σŶ , and σŶ Y are the local means, standard
deviations, and the co-variance for the reference Y and test
images Ŷ, respectively. Assuming C3 = (C2/2), the simplified
index becomes

SSIM
�
Ŷ, Y

� =
�
2μŶ μY + C1

��
2σŶ Y + C2

�

�
μ2

Ŷ
+ μ2

Y + C1
��

σ 2
Ŷ

+ σ 2
Y + C2

� . (16)

We therefore, conclude that two images can be regarded
similar only when both NMSE is low and SSIM is close to 1.

III. SIMULATION METHOD

In this section, we describe the simulation method to
generate a large database of Doppler enhanced frontal images
of humans in diverse through-wall conditions. We adopt the

Fig. 3. Radar scattering model of human.

technique described in [8] and briefly describe its salient fea-
tures in the following section. We model only the through-wall
propagation phenomenology and do not consider multipath
scattering from the ceiling, ground, and lateral walls. The
wall propagation phenomenology, modeled using FDTD tech-
niques, and primitive-based models of humans are hybridized
to generate Doppler-enhanced frontal radar images. There may
be considerable variations in the propagation conditions during
training and test due to variations in the wall characteristics
such as its dielectric constant and loss tangent. Modeling
this diversity with independent FDTD simulations is com-
putationally expensive. Therefore, we extend the simulation
framework discussed in [4] by incorporating stochasticity in
the propagation channel using the sFDTD technique suggested
by Smith and Furse [33]. The sFDTD method introduces
statistical variations in the electrical properties of the medium.
The results of the simulations provide the mean and the
variance estimates of the time-domain electromagnetic fields
at every point in the problem space from which numerous
samples of the through-wall propagation can be generated.
We describe these steps in greater detail in the following
sections.

A. Radar Signal Model

We consider a radar with a single CW transmitter of
frequency fc (wavelength λc). The receiver consists of an
P × Q uniform planar array along the xy plane with element
spacing λc/2. We use motion capture data for realistically
modeling complex human animation. We interpolate the data
from the video frame rate to the radar sampling frequency.
The data provide time-varying 3-D positions of B markers
distributed over the entire human body—head, torso, arms,
shoulders, and legs as shown in Fig. 3. We assume that these
markers correspond to point scatterers each of reflectivity ab

and located at spherical coordinate positions (rb, θb, φb), where
θb is the elevation from the xz plane and φb is the azimuth
with respect to the positive z-axis on the human body. Each
body part moves with a Doppler frequency fDb . The baseband,
digitized radar data at each (p, q)th element is given by

Xp,q,n =
B	

b=1

ab[n]e− j 2π
λc

|| �rb[n]−�rp,q ||22 (17)
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Fig. 4. Room geometry in through-wall scenario. (a) Dielectric. (b) Reinforced wall. (c) Wall with air gaps.

TABLE I

SIMULATED RADAR PARAMETERS

where n denotes the time sample and �rp,q is the position of
the radar element. The data are processed with discrete short
time Fourier transform across the time-domain using a sliding
time window centered around τ and 2-D Fourier beamforming
across the array to obtain a time varying 3-D radar cube in
terms of azimuth, elevation, and Doppler, χτ

φ,θ, fD
, as shown in

the following equation:

χτ
φ,θ, fD

= F3DXp,q,n

=
B	

b=1

ab H3D

�
φ−φb(τ ), θ−θb(τ ), fD − fDb(τ )

�
. (18)

Here, H3D[·] is the 3-D point spread function across the three
domains, and F3D indicates the 3-D Fourier operator. From
the radar cube, we identify peak scatterers of strength aτ

m[ fD]
located at (φm, θm) at every Doppler bin fD . We generate
Doppler enhanced frontal images χτ

φ,θ for every τ by con-
volving the peak scatterers with a 2-D point spread function,
H2D[·] as shown in the following equation:

χτ
φ,θ =

	

fD

aτ
m( fD)H2D[φ − φm, θ − θm]. (19)

The incorporation of the additional Doppler dimension enables
us to resolve multiple scatterers of the human body along
two spatial dimensions thus alleviating the need for larger
arrays required for successful imaging. The radar signal model
parameters that we use in this article are provided in Table I.

B. Stochastic Model of Through-Wall Propagation

The formulation discussed above describes the radar images
generated in free space conditions. In this section, we dis-
cuss the simulation of through-wall propagation phenomenol-
ogy. As shown in Fig. 4, we consider a 2-D simulation
space extending from −1 to 1 m and 0 to 4 m along the
x- and z-directions respectively (assuming the wall is invariant
along the y-height axis). The 2-D simulation framework is
chosen to reduce the computational complexity of the problem
and because most walls show homogeneity along the height.
In order to correspond to the radar signal model discussed
earlier, we consider a uniform 10 element linear antenna array
whose elements are spaced half wavelength apart. We indepen-
dently simulate the excitation from each element of the array,
located at �ρp, with a narrowband sinusoidal signal at fc. The
simulation space is bounded by a perfectly matched layer and
divided into spatial grids of λc/10 size. We considered three
different wall configurations—a homogeneous dielectric wall
[Fig. 4(a)], a wall reinforced with metal rods [Fig. 4(b)], and
a wall with air gaps [Fig. 4(c)]. Each wall type is simulated
independently. The dimensions of each wall are 2 m × 30 cm
(X : −1 to 1 m, Z : 1 to 1.3 m). In all three cases, stochastic
variations of 10% standard deviation are introduced in the
relative permittivity 
r = 4, and conductivity σc = 0.001 S/m,
of each grid point in the wall. Therefore, even the single-
layer dielectric wall is not truly homogeneous. This is done
to mirror real-world conditions. For every point in space, �ρb,
and at every time instant n, the sFDTD simulation gives the
mean time-domain electric field μE [ �ρb, �ρp, n] and its stan-
dard deviation σE [ �ρb, �ρp, n]. We use the Gaussian stochastic
model to generate 200 samples (η = 1, . . . , 200) of time-
domain electric field values E[ �ρb, �ρp, n, η) ∼ N (μE , σ 2

E ].
The E[ �ρb, �ρp, n, η] is fast Fourier transformed to obtain
the corresponding frequency domain wall transfer function
Hwall( �ρb, �ρp, η) at 7.5 GHz.

C. Modeling of Electromagnetic Radar Scatter From
Dynamic Humans in Through-Wall Scenarios

We integrate the free space radar signal model with the
through-wall propagation based on [3], [4]. We considered a
scenario where the human is moving behind a wall before a
radar. Since our FDTD simulation spatial extent is limited,
we removed translational motion of the human and only
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Fig. 5. Magnitude response at 7.5 GHz in (a) freespace, through (b) dielectric wall, (c) reinforced dielectric wall, and (d) dielectric wall with air gaps,
respectively. (e)–(h) Corresponding simulated Doppler enhanced frontal image of a walking human.

retained the dynamics of the swinging arms and legs. There-
fore, the time-domain scattered returns at each (p, q) antenna
element is obtained by hybridizing Hwall with the human
scattering center model as shown in the following equation:

Xp,q,n[η] =
B	

b=1

abγ2D→3D(p, q, b)
�

Hwall
� �ρb[n], �ρp, η

�� 2
.

(20)

Each point scatterer on the human is projected from its 3-D
position �rb to its 2-D counterpart �ρb on the xz plane. The term
Hwall[ �ρb, �ρq , η] models the propagation from the source �ρp to
�ρb and is generated from a stochastic realization (η) of the full
wave electromagnetic solver. The scaling factor γ2D→3D , given
by (21), adjusts the phase for modeling 3-D physics from the
2-D simulation as described in [3]

γ2D→3D(p, q, b) = e
− j 2π

λ [��rb [n]−�rp,q�2−��ρb[n]−�ρp�2]. (21)

IV. SIMULATION RESULTS

We first consider a single stride of a human walking motion
from Sony Computer Entertainment America. The duration
of the motion is 0.8 s which corresponds to one complete
human stride. The human is walking away from the radar at
an aspect angle of 180◦. We generate the Doppler-enhanced
frontal images for free space and the three wall types.

A. Doppler-Enhanced Frontal Imaging of Dynamic Humans
in Through-Wall Scenarios

The Doppler-enhanced frontal images account for all the
electromagnetic phenomenology introduced by the through-
wall propagation conditions including attenuation, ringing,
and multipath. To demonstrate the validity of our claim,
we show the magnitude response for the four scenarios at a
carrier frequency of 7.5 GHz and the corresponding simulated
Doppler-enhanced frontal image of a single frame of a walking
human, at a radar-target aspect angle of 180◦, in Fig. 5. Some

comments regarding the wall-target interaction phenomenol-
ogy on the frontal images:

1) Free Space: Fig. 5(a) shows that the magnitude response
of the electric field decays as the distance from the source
increases. The phase response (not shown here) displays well-
behaved circular wavefronts emanating from infinitely long
line source excitation. Due to the undistorted phase response,
we get the highest quality frontal images in the free space
scenario. We can clearly discern both arms, legs and head
of the human in the corresponding Doppler-enhanced frontal
image shown in Fig. 5(e). The image falls within the ±30◦
field-of-view of the radar along elevation and azimuth. There
is some smearing near the legs due to the limited resolution
along azimuth and elevation of the array.

2) Dielectric Wall: The propagation of a signal through a
homogeneous dielectric wall undergoes a two-way attenua-
tion of approximately 12 dB when compared to free space
Fig. 5(b). Hence, the strength of some of the peak scatterers in
the frontal image Fig. 5(f) becomes too weak to be visible on
the same dynamic scale as that of free space case. This image
clearly demonstrates the effect of through-wall attenuation on
the images.

3) Reinforced Wall and Wall With Air Gaps:
Fig. 5(c) and (d) show that the inhomogeneity inside
the wall causes multiple scattering that interferes construc-
tively or destructively in some regions leading to significant
distortions. As a result, the radar frontal images are signifi-
cantly distorted-positions of few scatterers get displaced along
the azimuth direction due to refraction while some of the point
scatterers are not visible at all because these lie at regions of
destructive interference shown in Fig. 5(g) and (h).

B. Results From Denoising Cluttered Images

We selected 30 frames of a human subject walking away
from the radar spanning a duration of 0.8 s as shown in Fig. 6.
The training data consist of images corresponding to different
motion states within a stride as shown in the stick figure
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Fig. 6. Simulated Doppler-enhanced frontal images over one walking stride of human motion and the corresponding stick figures obtained using ground-truth
motion capture data.

models in Fig. 6. The size of each image is [92 × 92]. Cor-
responding to each of these frames, we generated 200 distinct
through-wall radar images to capture statistical variations in
the wall parameters. Each image is then vectorized to a column
vector of size [8464 × 1], for final processing. Of the total
set of 6000 images for each wall type, 80% images are used
for training the autoencoder network and the remaining for the
test.

The results are obtained by optimizing the number of nodes
(R) in the hidden layer and the mapping function connecting
the input and the hidden layer. We fixed the hidden layer
dimension of the autoencoder network to be 500 and the
mapping to be linear between input and the hidden layer.
The choice of these parameters is discussed in the Appendix.
During training, the weight matrices W1 and W2 each of
size [500 × 8464] and [8464 × 500], respectively, are first
randomly initialized. The weights are updated over successive
iterations as discussed in the previous section. The heuristic
way of choosing λ is to start with a small value and then
keep increasing its value across multiple trials. But this is
not an elegant solution. Instead, a Bregman constant can be
introduced between the proxy and the original variable so as
to retain a fixed value of λ to ensure equality during conver-
gence [38], [39]. Our experiments showed that the results are
not very sensitive to this constant which can subsequently be
ignored. Since we give equal importance to both the encoding
and decoding stages, λ is fixed at 1. We have shown the
convergence of the objective function with iterations of the
learning algorithm in Fig. 7. Once learned, the weights are
used for the test.

Tables II and III show the results for the metrics, SSIM
and NMSE, as a function of number of distinct frames of
the human walking motion. We compare the metrics obtained
from images generated BD with those obtained AD. To give
readers a better understanding of the generality of the solu-
tion, we have studied the sensitivity of the performance of
the algorithm to different wall types during training and

Fig. 7. Convergence curve of the proposed algorithm.

test scenarios. We considered the following three training
scenarios.

Case 1 (Train and Test on Data From Same Wall): First,
we consider the scenario where the autoencoder is trained with
data from a specific wall configuration and then subsequently
tested on images generated from the same wall configuration.
The training data set size in this case is [8464 × 4800].
Note that even in the same wall case, there is diversity in
the training and test data due to the statistical variations
in the wall parameters as well as motion characteristics. BD,
the dielectric wall case has the lowest error when compared
to the reinforced and air gap walls. This is because the quality
of the radar images is a function of the phase and ampli-
tude distortions introduced by the walls to the radar signals.
Therefore, based on the magnitude and phase responses shown
in Fig. 5(c) and (d), we observe that the results deteriorate
mostly in the case of the wall with air gaps. The error between
reconstructed and the free space images drops significantly for
all wall types after passing through the denoising network.
We varied the number of frames from 1 to 30 to increase
the diversity in the human motions. Since this is a continuous
motion, there may be some slight correlation between images
obtained from consecutive frames. However, this is not very
evident from visual inspection of the images corresponding
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TABLE II

DENOISING RESULTS BETWEEN CLEAN AND CORRUPTED DOPPLER ENHANCED FRONTAL IMAGES FOR DIFFERENT THROUGH-WALL CONDITIONS.
SSIM: BETWEEN CORRUPTED AND FREE SPACE IMAGE BD AND SSIM: BETWEEN RECONSTRUCTED AND FREE SPACE IMAGE AD

TABLE III

DENOISING RESULTS BETWEEN CLEAN AND CORRUPTED DOPPLER ENHANCED FRONTAL IMAGES FOR DIFFERENT THROUGH-WALL CONDITIONS.
NMSE: BETWEEN CORRUPTED AND FREE SPACE IMAGE BD AND NMSE: BETWEEN RECONSTRUCTED AND FREE SPACE IMAGE AD

Fig. 8. Group correlation across multiple frames.

to the frames as seen in Fig. 6. So, we map the group
correlation index across the multiple frames as we increase
the diversity of the training data in Fig. 8. The figure shows
that the group correlation increases till it reaches a plateau
of about 10 frames. Hence, the denoising performance seems
to improve when we increase from a single frame to 10
number of frames as the training data captures the diversity
of motions in the Tables II and III. Beyond this, the perfor-
mance of the denoising algorithm slightly deteriorates due
to the possible decorrelation between test and training data.
However, the deterioration in the performance is very slight.
The performance indicates that this algorithm is specifically
suited for imaging continuous and periodic motions such as
walking. Also, note that NMSE and SSIM do not behave in
an identical manner for all the cases as they indicate different
aspects of similarity of images. In practice, this case seems
to be limited since in real-world scenarios, we may not know

the type of wall available during the test phase. Therefore,
we consider a significantly more challenging scenario where
there is no information on the type of wall during the test
phase.

Case 2 (Train Using Data From a Single Wall Type and Test
Using Data From a Different Wall Type): Next, we analyze the
performance of the algorithms when the network is trained on
images captured from a dielectric wall and tested with images
captured from a reinforced wall type. The resulting denoising
performance reported in Table II deteriorates considerably as
the number of frames increases. The reason for the poor per-
formance is because the nature of the clutter in the dielectric
case is quite different from that of the reinforced wall case.
The algorithm is unable to denoise the clutter due to the lack
of diversity in the training data. Henceforth, we do not report
the results for this case.

Case 3 (Train Using Data From Multiple Types of Walls
and Test on Data From a Single Wall): To overcome the
limitation of the previous case, we train the network on images
captured from all three through-wall scenarios resulting in total
training data set the size of [8464 × 14400]. Then, the data
from any of these walls are randomly chosen for the test.
This is a significantly more challenging scenario since no
information of the type of wall is available during the test
phase. Note that the images used in the test phase have not
been used during training. Our algorithm is specifically suited
for problems dealing with a great deal of diversity in the target
and channel conditions (different wall scenarios). The results
show very good performance (NMSE and SSIM) comparable
to that of the same wall scenarios. Thus, the performance of
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TABLE IV

DENOISING RESULTS BETWEEN CLEAN AND CORRUPTED DOPPLER ENHANCED FRONTAL IMAGES FOR DIFFERENT THROUGH-WALL CONDITIONS.
SSIM: BETWEEN CORRUPTED AND FREE SPACE IMAGE BD AND SSIM: BETWEEN RECONSTRUCTED AND FREE SPACE IMAGE AD, AD

(PROPOSED) USING OUR PROPOSED APPROACH AND AD (BASE) BASED ON SVD TECHNIQUE

Fig. 9. Simulated Doppler-enhanced frontal images over one walking stride of human motion for different aspect angles.

the algorithms depends on the diversity of test data provided
while training.

We performed additional experiments to benchmark the
performance of our algorithm with a popular wall clutter miti-
gation technique based on singular value decomposition (SVD)
presented in [40] and [41]. In [41], multichannel broadband
data were processed to obtain range-direction of arrival (DOA)
images and the objective was to remove static wall clutter.
The hypothesis was that the target and wall reflectivities lie
in different subspaces. Since the wall reflections are typically
stronger than target reflections, the first few singular vec-
tors obtained from SVD span the wall subspace while the
remaining vectors span the target (human) and noise subspace.
We follow the same assumption and reconstruct the frontal
images after removing the wall response, arising from the top
few eigenvalues, from the received signal. Then we process
the data to obtain the frontal images. The results presented
in Table IV clearly indicate that the SVD-based approach fails
to denoise the radar images in both the homogeneous wall and
heterogeneous wall scenarios. This can be attributed to the fact
that in our case the target returns are dependent upon the wall
characteristics. Therefore, these returns cannot be separated
into two subspaces using the SVD-based approach.

C. Impact of Radar-Target Aspect Angle
In order to understand the generality of the proposed

denoising solution, we trained our autoencoder network with

human radar images captured at different aspect angles with
respect to radar line-of-sight conditions. We analyzed the
performance of our algorithm for four aspect angles—0◦, 45◦,
90◦, and 180◦. The time-varying Doppler-enhanced frontal
images generated in free space for 0◦ and 90◦ are shown
in Fig. 9. These can be compared to the frontal images for
180◦ that were shown earlier in Fig. 6. Here, 0◦ aspect angle
means the person is walking toward the radar and 180◦ means
the person is walking away from the radar. Similarly 90◦
corresponds to the motion along the tangential direction to
the radar. We studied the efficacy of the algorithm for the
reinforced wall which, as mentioned earlier, is one of the most
complex walls. We tested the performance of the denoising
autoencoder on two scenarios: In the first scenario, both the
training and test data are gathered at the same aspect angle
(identical training and test scenario); In the second scenario,
we used images captured at multiple different aspect angles for
both training and testing the autoencoder. Therefore, during
the test, the algorithm is not provided information of the
aspect angle of the data. We used both NMSE and SSIM to
measure the performance and report the results in Table V.
We observe the highest error when the algorithm is trained
with data captured at 90◦ aspect angle that is when the human
walks in a direction tangential to the radar. This is most likely
because of the inherent distortions in these frontal images due
to the limited separation of point scatterers on the subject
along the azimuth direction which can be clearly seen from
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Fig. 10. Simulated Doppler-enhanced frontal images over a crouch to run motion of a human and the corresponding stick figures obtained using ground
truth motion capture data.

TABLE V

DENOISING RESULTS BETWEEN CLEAN AND CORRUPTED IMAGES

(CAPTURED BEHIND REINFORCED WALL) FOR DIFFERENT ASPECT

ANGLES. SSIM, NMSE: BETWEEN CORRUPTED AND FREE SPACE

IMAGE BD AND SSIM, NMSE: BETWEEN RECONSTRUCTED
AND FREE SPACE IMAGE AD

Fig. 9. Likewise, the Dopplers of the different point scatterers
on the human body are not well resolved due to the tangential
motion. The results reported for all the aspect angles show
significant improvement AD. When we consider data from
multiple aspect angles, the denoising significantly helps in
reconstructing images close to free space images even when
the algorithm is not provided any information of the exact
aspect angle at which a person is walking. Therefore, we can
infer that the autoencoder is specifically suited for problems
dealing with a great deal of diversity in the target and channel
conditions. It can significantly denoise: 1) images captured in
similar and dissimilar-wall conditions as well as and 2) images
captured at different aspect angles of the target provided there
is sufficient diversity across training data.

D. Aperiodic Human Crouch to Run Motion
We performed additional simulations to evaluate the per-

formance of algorithm when human undergoes a nonperiodic
motion—when a human transitions from a crouch to a run
toward the radar. Fig. 10 shows the micro-Doppler signature
of this motion. Since our FDTD simulation spatial extent is
limited, we removed translational motion of the human and

Fig. 11. Simulated human. (a) Group correlation across multiple frames.
(b) SSIM variation for simulation results with respect to number of frames.

only retained the dynamics of the swinging arms and legs.
Here, the torso velocity is mostly around 0 since there is no
translational motion of the human. We considered 40 con-
secutive frames of a human subject over a period of 1.2 s.
The transition between the motion states can be clearly seen
from the frontal images and their stick figure counterparts.
This motion is considerably more challenging than the simple
human walking motion. As the number of frames increases,
there is enough diversity in the motion which is also reflected
in the group correlation index across multiple frames shown
in Fig. 11(a). We tested the performance of our algorithm on
the data set captured behind a reinforced wall (a complex
wall). Fig. 11(b) shows the denoising performance of the
proposed algorithm on the complex data set. The figure shows
that the denoising algorithm (using the linear mapping func-
tion) results in significant improvement in the SSIM AD
until approximately 15 frames. Beyond this, the performance
of the denoising algorithm deteriorates due to the possible
decorrelation between test and training data which is also
reflected in Fig. 11(a). Thus, we conclude that the performance
depends on how well the algorithm is trained to handle
diversity in the test data.

V. MEASUREMENT RESULTS

A. Measurement Data Collection

In this section, we evaluate the performance of our algo-
rithm using wideband measurement data captured in both
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TABLE VI

PARAMETERS OFREAL RADAR SETUP. *- VALUES DERIVED
FROM AVAILABLE INFORMATION

free space and through-wall conditions. The data are col-
lected using Walabot Pro [34], a wideband (3.3Š10.3 GHz)
3-D-programmable RF imaging sensor. Walabot is a low-
power uncalibrated sensor with a limited range in through-
wall scenarios. It uses a 4× 4 antenna array to illuminate
the area in front of it to capture the backscattered signals.
The hardware radar parameters are listed in Table VI. The
range-enhanced images are obtained in a manner similar
to (19) by replacing the Doppler dimension with the range
dimension. Here, the peak scatterers across all the range gates
are coherently summed to obtain the frontal images of the
targets. These steps are performed within the in-built processor
in the sensor and we are provided with output range-enhanced
images. The assumption here is that the targets are still or slow
moving.

Our clean measurement data consist of range-enhanced
frontal images of a human gathered in line-of-sight condi-
tions in an environment mostly free of clutter. The through-
wall measurement data comprise images captured through a
2-cm thick glass wall and a 3-cm thick wooden wall. The
subject stands in front of the radar at a standoff distance of
2 m carrying two corner reßectors covered with aluminum
tape to enhance the reßectivity from the hands as shown
in Fig. 12(a). Therefore, the target is an extended one with
multiple point scatterers. The experiments are performed on
four human subjects of different heights and girth at different
orientations (Š45
 to + 45
 ) with respect to the radar but
always facing the radar. For each of these subjects, we cap-
tured 75 measurements resulting in a total of 300 images
of which 80% are used for training and remaining for the
test. An example of the resultant radar image in free space
is shown in Fig. 12(b) where we can clearly discern the
torso, legs and two arms of the human. Radar images are
corrupted when the measurements are gathered under different
through-wall conditions. Some examples of the distortions are
presented in Fig. 12. Fig. 12(c) and (d) corresponds to images
in the through-glass wall and through-wood wall conditions,
respectively. These images are considerably distorted due to
the complex interaction between the wall and the target. Each
image of size[91× 37] is vectorized to obtain a[3367 × 1]
vector. Then all images are clubbed together to form a training
data matrix of size[3367 × 240] and test data matrix of
size [3367 × 60]. Once trained, the weight matricesW1

Fig. 12. (a) Measurement setup in free space and measured range-enhanced
frontal image of a human subject in (b) free space. (c) and (d) Behind a glass
wall and wood wall, respectively. (e) and (f) Denoised images in through wall
scenarios-glass wall, wood wall, respectively, using the proposed algorithm.

and W2 are used to denoise the corrupted test images using
(10). Analogous to simulations, we examine the variation of
denoising performance for a different number of nodes in the
hidden layer, for different mapping functions (linear, nonlinear,
tanh, and sigmoid) and for different proportions of training to
test data.

B. Measurement Results and Analyses
We tested the performance of the denoising autoencoder

for same walland different wall scenarios. In the same wall
scenario, both the training and test data are gathered from
the same type of wall. In the different wall scenarios, data
from multiple walls are used for training the autoencoder
which is subsequently used for denoising images from any
of the two walls. The reconstruction results are presented
as a function of the percentage of training data to test data
in Table VII. These results have been obtained using an
autoencoder where the hidden layer has 1500 nodes and the
mapping function is sigmoid. The choice of these parameters
is discussed in the Appendix. The table shows SSIM and
NMSE between the denoised radar images in through-wall and
corresponding radar images gathered in free space conditions.
We compare the metrics BD with those AD. We observe
there is a signiÞcant improvement in SSIM and reduction
of NMSE AD. The performance improves as the percentage
of training to test data increases for both the same wall and
for different wall scenarios. In other words, the performance
during the test relies on adequate training data. The error for
the different wall scenario is only slightly higher than the same
wall scenario. This is the scenario when the test algorithm has
no knowledge of the wall scenario. Note that in the case of
the wideband measurements, we have not presented the result
as a function of the number of frames. This is because the
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TABLE VII

DENOISING RESULTS BETWEEN CLEAN AND CORRUPTEDMEASUREMENTIMAGES OF REAL HUMANS FOR DIFFERENT THROUGH-WALL CONDITIONS
UNDER VARYING PERCENTAGE OFTRAINING DATA . NMSE, SSIM: BETWEEN CORRUPTED AND FREE SPACE IMAGE BD AND NMSE, SSIM:

BETWEEN RECONSTRUCTED ANDFREE SPACE IMAGE AD

targets are static and each measurement is independent with
no correlation between them. Please note that the SVD-based
algorithm is predicated on the availability of raw data. Since
our measurement results are images directly obtained from
the Walabot sensorÑa cheap sensor that does not provide raw
dataÑwe could not apply the SVD on the measurement data.

VI. D ISCUSSION ONRESULTS

A. Computational Complexity Evaluation

The real-time performance of the algorithm relies on the test
time and the test memory rather than training time. During
the test, we perform matrix multiplication operations of the
trained weightsW1 and W2 with test imageöYtest. The sizes
of the weight matrices and the image matrix areR × N,
N × R andN × 1, respectively, whereN denotes the number
of pixels in the image andR denotes the number of hidden
nodes in the autoencoder such that the number of nodes is
always well below the number of pixels. The computational
complexity, therefore, isO(RN). We ran our algorithm on
MATLAB 2015 b, where all the variables were stored as
64 bit ßoats, with an Intel Core i7Š5500 processor running
at 2.40 GHz. We report the test and training times of our
algorithms as a function of the number of nodes of the hidden
layers in Fig. 13. Both the training and test times are higher
when R is greater. The test time is signiÞcantly low even for
the highest number of hidden nodes (1500). The computational
memory in all of these cases was less than 500 MB. Therefore,
these test operations can be carried out in easily available
processors such as Raspberry PI 3+ (with a 1 GB RAM and
1.4 GHz clock speed).

B. Diversity of Training Data
The training data must be sufÞciently large to handle the

diversity of target conditions, channel conditions and any type
of labeling errors between free space and through-wall images.

1) Diversity of Target Data:In our article, our autoencoder
has been trained to handle the diversity in the size, shape, and
orientation or aspect angle of the target with respect to the
radar. In the case of dynamic motions, the correlation between
consecutive frames facilitated in improving the denoising
performance.

2) Diversity of Channel Data:Next, the proposed approach
does not require the knowledge of the exact wall condi-
tions or analytical framework during the test phase. Instead,

Fig. 13. Computational time as a function of number of nodes in the hidden
layer for (left y-axis) training phase (righty-axis) test phase.

the algorithm was capable of denoising images obtained from
diverse through-wall conditions.

3) Labeling Errors Between Free-Space and Through-Wall
Images: Finally, in practice, it may be nearly impossible
to gather correlated images in free space and through-wall
conditions especially for dynamic targets. For example, it may
not be possible to replicate human motions in two different
scenarios. Therefore, the algorithm must tolerate some degree
of diversity in the motion characteristics during test and train-
ing phases. A sensitivity analysis of mismatch/labeling error
between clean (free space) and the corrupted (through-wall)
training images is not considered in this article. Generally,
in machine learning scenarios, these algorithms are quite
robust to reasonable random errors in the training set arising
due to incorrectly labeled data. However, the algorithms are
less robust to systematic errors when the samples are consis-
tently incorrectly labeled.

VII. CONCLUSION

We demonstrate the efÞcacy of the denoising autoencoder
network at mitigating the distortions and clutter introduced
by wall propagation on radar images of humans. The pro-
posed approach requires neither prior information of the wall
characteristics nor any kind of analytic framework to describe
the wall propagation effects. Instead, the algorithm relies
on the availability of a huge training data set comprising
of distorted radar images captured in diverse through-wall
scenarios and the corresponding clean images in line-of-sight
conditions. Once trained, the algorithm is capable of mitigating
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Fig. 14. SSIM variation for simulation results with respect to (a) num-
ber of frames and (b) number of nodes in the hidden layer for mapping
functions—linear, tanh, and sigmoid.

through-wall effects of similar walls though not necessarily
identical walls. This capability makes this approach suitable
for tracking humans under diverse propagation environments.
We evaluated the performance of the algorithm on both static
and dynamic targets. The radar images of dynamic humans
were simulated using Doppler-enhanced array processing
while the images of the static humans were generated from
measurement data using range-enhanced array processing. BD,
the images were considerably distorted by through-wall propa-
gation effects. Our algorithm showed that AD, the images were
structurally similar to a low mean square error with respect to
the free space images.

APPENDIX

HYPERPARAMETER SELCTION

We optimized the number of nodes in the hidden layer
and mapping functions to obtain the results presented in the
previous sections. First, we discuss the autoencoder used in
the simulation data. We simulated narrowband time domain
returns at a carrier frequency of 7.5 GHz with the gains of the
antennas to be 10 dBi, and the transmitted power at +30 dBm.
As a result, the maximum received signal strength from the
human subject (at R = 2.5 m) is −57 dBm. Therefore, all the
pixel values in the simulated images are negative. Fig. 14(a)
shows the performance for different mappings—linear, tanh,
sigmoid—as a function of number of frames. We observe that
the linear and tanh mapping outperform the results obtained
using sigmoid mapping functions. This is because both sig-
moid and hyperbolic tangent (tanh) functions are monotoni-
cally increasing functions that asymptote at ±∞. However,
the tanh function is symmetric about the origin and produces
output values between [−1 1] while sigmoid function outputs
are always positive [0 1]. The sigmoid mapping function
is thus not suited to handle the negative signal strength in
the radar images due to its asymptotic behavior. The linear
mapping function is best suited for this case. Our studies also
showed that using similar mapping functions in the encoder
and decoder results in better performances when compared to
the use of dissimilar mapping functions. Fig. 14(b) show the
variation of SSIM before and AD as a function of the number
of nodes in the hidden layer. We observe that the performance
converges when the number of nodes is approximately 500.

Next, we discuss the autoencoder used on the measurement
data of real humans in both line-of-sight and through-wall

Fig. 15. SSIM variation for measurement results with respect to number of
nodes in the hidden layer for mapping functions-linear, tanh, and sigmoid for
human subjects.

conditions. The measurement data are collected using the
Walabot that has an analog to digital converter (ADC) of 8
bits. The digitized data are calibrated to a voltage scale from
0 to 5 V. In the radar images, the pixel values are converted
to the logarithmic scale and hence, consist of both negative
and positive values. Due to the dynamic range of the pixel
energy values, the sigmoid function is now able to handle the
denoising and we get excellent results in Fig. 15. The results
are in perfect accordance with our previous hypothesis that the
performance of these activation functions is sensitive to the
signal strength and dynamic range of the pixels in the radar
images. In fact, the nonlinear mapping functions are slightly
superior to the linear mapping function. The linear mapping
function is able to handle the nonlinearity in the wall response
since the images are inherently sparse. The SSIM varies as
a function of the number of nodes in the hidden layer for
different mapping functions in Fig. 15. The SSIM improves
and tends toward 1 as we increase the number of nodes in the
hidden layer to 1500.
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