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Abstract—Micro-Doppler signatures of dynamic targets such
as humans, animals and vehicles are very effective feature vectors
for classification based on machine learning algorithms. In the
existing works, the test data have been measured in nearly
identical operating conditions to the training data that were
gathered for the classifiers. However, this assumption may be
violated in real life scenarios. In this work, we demonstrate
that classification based on sparsity based dictionary learning
can overcome this limitation. Here, we learn unique target class
dictionaries from micro-Dopplers gathered at multiple carriers.
Then we test the classifier using data gathered at another carrier
(distinct from those used for training). We test the performance of
the classification algorithm for both simulation and measurement
data. Our results show a classification accuracy of 99% and 89%
for simulated and measurement data respectively.

Keywords–micro-Dopplers, classification and, dictionary
learning

I. INTRODUCTION

Continuous wave radar scatterings from the motions of non-
rigid bodies exhibit micro-Doppler phenomena in the joint
time-frequency space [1]–[3]. These micro-Doppler signa-
tures have been extensively researched for target recognition
and classification purposes for applications such as military
surveillance, law enforcement, bio-medical studies and in
search and rescue operations. In [4], the authors exploited
time domain information embedded in the micro-Doppler
signal in a dynamic time warping algorithm to discriminate
between multiple targets. On the other hand, in [5], spectral
information was used to discriminate micro-Dopplers. Authors
have employed both heuristic methods in [6], [7] and more
sophisticated methods such as principle component analysis
(PCA), independent component analysis (ICA) and empirical
mode decomposition to extract distinctive features from time-
frequency spectrograms for classification [8]–[10]. All of
these works require domain knowledge to extract the most
useful and discriminative features from micro-Doppler data.
Alternately, in [11], the authors used an unsupervised feature
learning method- deep convolution neural network (DCNN),
for human activity classification.

The fundamental assumption underlying all of these works
is that the training data, required for machine learning pur-
poses, and the test data must be gathered in similar operating
conditions. These conditions include radar parameters such as
the carrier frequency, transmitted waveform, power and sensor

location as well as target parameters such as the motion trajec-
tory of the target. However, this assumption may be violated
frequently in real life conditions. For instance, a particular
radar carrier may be unsuitable in an urban environment due
to the presence of interference sources such as WiFi. If the
radar is operated in a non-line-of-sight environment (through-
wall, foliage penetration) the dispersive propagation channel
may support a particular carrier over others. Therefore, there
is a tremendous advantage in allowing for a reconfigurable
radar such as [12], [13] where the radar parameters, such as
the carrier frequency, can be easily modified using software
during actual deployment. The reconfigurable radar must be
accompanied by suitable classification algorithms which can
tolerate the diversity in radar parameters and resulting micro-
Doppler signatures.

In this work, we propose a dictionary learning based classi-
fier that is trained and tested with distinct carrier frequencies.
Dictionary learning is a popular method that has been recently
introduced in [14], [15]. It has been used extensively in image
processing, audio and video processing, denoising and source
separation applications such as energy disaggregation. We
have previously demonstrated the advantages of dictionary
learning for representing underlying micro-Doppler signals
in a sparser fashion compared to fixed data independent
transforms like DCT, wavelet or Fourier in [16], [17]. In this
work, we use training micro-Doppler data captured at multiple
carriers to learn an exclusive model or dictionary for each
moving target class. Once learned, these discriminative dictio-
naries can directly be used to classify test signal measured at
either the same or different carrier than that being used at the
time of training the corresponding dictionaries.

We demonstrate the performance of this algorithm with
both simulation and measurement data. For the measurement
data, we gathered micro-Doppler data from 50 individuals
(men and women) for three different classes- two humans
walking together, a boxing human, single human walking with
a stick and a rotating table fan. We gathered the data at five
different carrier frequencies - 2.5GHz, 3GHz, 3.5GHz, 4GHz
and 4.5GHz. Choice of multiple carriers can be adapted to
different radar operating scenarios. We learned the dictionaries
from the micro-Doppler data corresponding to four of the
five carriers and tested the classifier with data from the fifth
carrier. We used sparse representation based classifier (SRC)
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for classification of micro-Dopplers from multiple target types.
We performed five-fold cross validation to measure the classi-
fication accuracy of the proposed technique. Our results show
that the classifier uses the learned dictionaries to accurately
identify the target returns at different carrier frequencies in
99% of the test cases using simulated data and 89% of the
test cases using measured data.

Our paper is organized as follows. In section II, we briefly
explain dictionary learning and the classification algorithm
used in this paper. In section III, we describe the simulation set
up and the results. In section IV, we describe the experimental
set up for measurement data collection and the results from
the measurement data. Section V concludes the paper.

II. THEORY

Traditional transforms such as Fourier and wavelets have
been widely used to represent micro-Doppler signatures for
classification purposes [7], [18]. However the selection of
optimum parameters for these data independent dictionaries,
becomes challenging when multiple targets are present. For
instance, the choice of the short time window (dwell time)
duration, in the case of short time Fourier transform, is critical
for successfully representing the micro-Doppler signature of a
dynamic target. However, the dwell time can vary significantly
between different targets (say humans and fans). Dictionary
learning provides an alternative where unique dictionaries can
be learned for each target class from the training data. As a re-
sult, the dictionaries represent the signals sparsely and capture
their uniqueness. Secondly, since these dictionaries are data
dependent, they can be used to learn the features from multiple
signatures gathered at different carriers. This flexibility is not
available with the data independent transforms.

A. Dictionary Learning Framework

Dictionary learning aims at learning a pool of signal vectors
also known as basis or atoms B, which can be tuned to the
underlying signal Y . Hence, they yield slightly sparser repre-
sentations A, of the signal than off-the-shelf fixed dictionaries
as shown in (1).

Y = BA (1)

This learning problem fundamentally involves minimizing the
objective function J(B,A) as shown in (2).

J(B,A) = min
B,A
‖Y −BA‖2F s.t. ‖A‖0 ≤ τ (2)

Here A is τ sparse and ‖.‖
0

is the l0 norm of the vector
that counts the number of non-zero elements in that vector
to ensure sparse representation of the signal Y . Since l0-
minimization is NP-hard [19], it is relaxed to convex l1-
minimization problem shown in (3).

J(B,A) = min
B,A
‖Y −BA‖2F + λ ‖A‖1 (3)

This formulation is simply a constrained Euclidean cost func-
tion that measures the quality of signal representation. λ ∈ < is
the regularization parameter that controls the tradeoff between
sparsity and data fitting error.

First consider P dimensional R training signals forming a
training matrix Y such that Y ∈ <P×R. These training signals
comprise of micro-Doppler data gathered at multiple carrier
frequencies. The dictionary, B ∈ <P×Q, is undercomplete if
P > Q or overcomplete if P < Q. We choose undercomplete
representations for each class. We solve for B and A using
a two staged iterative procedure where atoms of B and
coefficients, A, are updated alternatively as discussed below.

For k = 1 stage, B1 is initialized with randomly selected
signal vectors from the data itself. Subsequently, for every kth

stage, the coefficients Ak are learned using sparse coding as
shown in (4).{

Ak
}
= min

Ak

∥∥Y −BkAk
∥∥2
F
+ λ

∥∥Ak
∥∥
1

(4)

Equation (4) is known as Least Angle Shrinkage and Selection
operator (LASSO) which can be solved using a number of
basis pursuit algorithms. In this paper, we solve this using the
Iterative soft thresholding algorithm (ISTA) suggested by [20].

Once sparse coefficients Ak are estimated, obtaining Bk+1

becomes a least squares problem [21] which can be solved
using the formulation given in (5).{

Bk+1
}

= minBk+1

∥∥Y −Bk+1Ak
∥∥2
F

s.t. ‖bp‖22 ≤ 1∀p = 1, 2, ...P
(5)

The columns of dictionary are normalized to have l2-norm
less than unity. This two staged process is iterated until
the objective function J(B,A) converges or reaches a very
low tolerance level. The algorithm, thus, automatically learns
discriminative features and classification boundaries from the
training dataset.

If there are N target classes, the corresponding dictionaries,
Bn can be learned for each nth class using this procedure.
Once learned, these dictionaries can be used directly for the
task of classification using the sparse representation based
classifier (SRC) which is discussed next.

B. Sparse Representation Based Classification

Sparse representation based classifier combines the dictio-
naries, Bn, ∀n = 1, 2, 3, ...N , from all N target classes to
form B as shown in (6).

B = [B1B2B3 ..BN ] ∈ <P×N (6)

Although we considered undercomplete representation of the
dictionaries at the time of training but, the overall dictionary
B shown in (6) results into an overcomplete one. We can now
classify any test signal Ytest by first finding its sparse repre-
sentation, Atest, over B using any l1-minimization technique
as shown in (7).{

Atest

}
= min

Atest

‖Y −BAtest‖2F + λ ‖Atest‖1 (7)

Here, the test signal comprises of micro-Doppler data gathered
at a distinct carrier frequency from those used in the training
stage. In ideal, noise less conditions, the entries of Atest, that
correspond to the class which the test sample Ytest belongs
to, will be nonzero while all the other entries (corresponding
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to other classes) are zero. Realistically, this implies that the
test sample is assigned to the class having the least error of
representation amongst all classes as shown in (8) and (9).

rn(Ytest) = ‖Ytest −BnAn‖22 ∀n = 1, 2, 3, ...N (8)

k̂ = min
n
rn(Ytest) (9)

Here, k̂ is the class assigned to the target based on the
minimum residual error, rn(Ytest), criterion.

III. SIMULATION

In this section, we examine the performance of the classifier
when training and test data are gathered at different carrier
frequencies. We simulate the time domain micro-Doppler
returns from three classes of moving targets- human walking
towards radar (FH), human walking away from radar (BH)
and a rotating ceiling fan (CF). We have only considered these
simple human motions over more complicated motions such
as crawling or boxing due to the unavailability of suitable
kinematic models. In the past, the radar returns of these
motions have been simulated with motion capture data from
existing animation databases [22]. But in those cases, the
animation data were captured for only a very limited number
of test subjects. On the other hand, the popular Boulic model,
that is derived from biomechanical experimental data, can be
used to simulate a wide variety of human walking motions
[23]. In this model, the dynamics of 17 reference points on
the human body (head, the shoulders, knees, the neck, spine
base, elbows, hips, ankles and toes) are described by 12 time
dependent trajectories which are functions of three parameters
- the height and the relative velocity of the human and the
starting phase of his stride. Thus by varying these parameters,
we can describe a corresponding variety of human walking
motions. We assume that each target is composed of a few
discrete primitives (spheres, plates, cylinders, ellipsoids) with
corresponding scattering points and the superposition of the
returns from these points give rise to the aggregate reflected
signal [3]. We have modeled the ceiling fan using a 3-point
scatterer model, where each point scatterer is located midway
on three flat rectangular blades. The radar backscattered re-
turns is a function of three parameters- the angular velocity of
rotational motion, the blade length and blade width.

A. Simulation Set Up

We assume a monostatic continuous wave radar configura-
tion located at [10, 0, 0]m, with three target classes, as shown
in Fig. 1.

We assume that the propagation channel consists of only
a single moving target at a time. Here, the human is upright
along the Z axis and walks along the XY plane either towards
the radar or away from the radar. The fan rotates about the Z
axis in the XY plane. We simulate the radar returns from the
three target classes at multiple carrier frequencies- 2.5GHz,
3GHz, 3GHz, 4GHz and 4.5GHz for a duration of 1s with a
sampling frequency of 1KHz.

Fig. 1. Room Geometry

In Fig.2, we show the spectrograms generated for simulated
human walking towards radar (FH), human walking away
from radar (BH) and a ceiling fan (CF) at 4GHz. In the
case of the human, the Dopplers are mostly positive when
the target is approaching the radar. The strongest returns arise
from the torso while the weaker returns are generated from
the motions of the arms and legs. Some of the negative
Dopplers arise from the backswing of the arms and legs. The
spectrogram of the human walking away from the radar is very
similar, except for the sign reversal of the Doppler values.
The spectrogram of the fan shows very different pattern.
The motion of the three blades give rise to three sinusoidal
curves. The amplitude of these curves is a function of the
product of the blade length and the angular velocity of the
fan. As the Dopplers are directly a function of the carrier
frequency, there are two direct consequences to the micro-
Doppler signatures. Provided the short time duration is kept
fixed, the frequency resolution and the Doppler extent of
the signatures will be lowered when the carrier frequency is
reduced and higher when increased. Second order effects such
as scattering, absorption and multiple interactions between the
different body parts are not considered in the simulation data.
As mentioned earlier, the position, size and motion of the

three target classes are varied to generate a variety of training
and test data. We have varied the human height from 1.5m
to 1.8m and its relative velocity from 1(Ht/s) to 2(Ht/s)
where Ht is the height from toe to hip as described in [23] and
derived from the height of the human. Similarly we simulated
multiple distinct cases for rotating fan by varying its blade
length from 0.20m to 0.40m, the width of blades from 0.14m
to 0.17m and the angular velocity of rotation between 200RPM
to 400RPM. Overall, 360 distinct human and fan cases were
generated for each particular carrier frequency. Thus for 5
different frequencies we simulated a total of 1800 cases out of
which 80% (data from 4 carriers) were used for training and
20% (data from the fifth, distinct carrier) for testing purposes.
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(a) (b)

(c)

Fig. 2. Spectrogram generated using STFT of a simulated (a) human walking towards radar, (b) a human walking away from the radar and (c) a rotating
ceiling fan at 4GHz

B. Results

The training matrix of each target class was of size
[1000× 1440] with 1400 distinct training cases (80% of total
1800 cases) each with 1000 time domain samples (sampling
frequency of 1KHz of 1 second data). We used the two
staged dictionary learning technique described earlier to learn
human and fan undercomplete dictionaries of size [1000×500]
each. We tested our algorithm with test data comprising of
returns from a single target simulated at a carrier frequency
different from those used while gathering the training data. We
performed five-fold cross validation to measure the accuracy
of classification using the SRC algorithm. Each test sample
was assigned to the class having least residual error computed
using (9). The algorithm used a regularization parameter of
value 0.01 and ran in MATLAB on a 2.4GHz Intel processor.

Resulting classification accuracies are presented in TABLE I
for each fold. The results clearly show that the SRC classifier
correctly identifies the different target classes more 99% of
the time using their corresponding dictionaries even if both
training and testing were performed using distinct datasets
extracted at different carrier frequencies.

IV. MEASUREMENTS

We examine the performance of the proposed algorithm in
real world scenarios using radar measurement data. Compared
to the simulation setup, we have considered more complex

TABLE I
CLASSIFICATION ACCURACY FOR EACH FOLD USING SIMULATED

MICRO-DOPPLER DATA CAPTURED AT MULTIPLE CARRIERS

Cases Fold 1 Fold 2 Fold 3 Fold 4 Fold5 Average
FH 100 100 100 100 100 100
BH 100 100 100 100 100 100
CF 100 98.33 100 100 96.66 98.99

target motion classes - a boxing human (HB), human walking
holding a stick (HHS), two humans walking in opposite
directions (TH), and a table fan (TF).

A. Set Up

A monostatic configuration of continuous wave Doppler
radar was configured with two linearly polarized double-ridged
horn antennas (HF907) separated by a distance of 30cm, and
a N9926A FieldFox vector network analyzer (VNA) as shown
in Fig. 3. We captured time domain back-scattered returns
from the targets using S21 measurements of the VNA at
multiple carrier frequencies -2.5GHz, 3GHz, 3.5GHz, 4GHz
and 4.5GHz. Again, we considered only a single dynamic
target class in the propagation channel. The measurements
were made over a duration of 2.7s with 1000 samples in indoor
line of sight (LOS) conditions. The lower sampling frequency
in the measurement data (compared to the simulationd data)
is due to the limitations of the time-domain measurement
capabilities of the VNA.
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Fig. 3. Experimental setup using continuous wave monostatic radar with two
linearly polarized horn antennas (HF907) and a VNA

The spectrograms of all four target classes are shown in
Fig. 4. Fig. 4(a), shows the spectrogram generated from the
micro-Doppler returns from a boxing human. Here, there is
no translational motion of the human body due to which
the torso Doppler is at 0Hz. Likewise, there are very weak
returns from the legs. The Dopplers, from the hands, follow a
periodic pattern corresponding to hand movement in a boxing
activity. Doppler are positive when hand moves in the direction
of radar and negative when moves in opposite direction.
Fig. 4(b) corresponds to spectrogram of a human walking with
a stick. The pattern is similar to that shown earlier in Fig.2(a).
However, now we see an additional Doppler component arising
from the movement of the metallic stick (almost like a third
limb motion). Fig. 4(c) captures the motion of two humans
walking simultaneously. The one who is approaching the radar
has positive Doppler frequencies and the who walks away has
negative Dopplers. Fig. 4(d) shows the micro-Doppler from the
table fan. This is quite different from the spectrogram from
simulated data seen in Fig.2(c). The difference arises due to
the lower sampling frequency of the measurement radar that
gives rise to aliasing of the signals.

We gathered experimental data from 50 different human
subjects, both men and women, (with distinct gaits, heights,
velocities and undergoing different activities) and a table fan
(with varying angular velocities, distances and orientations
with respect to the radar). The human subjects moved between
1m and 9m in front of the radar. We measured in total 100
unique cases for each target class at 5 different carrier frequen-
cies. 80% of the data (corresponding to 4 carrier frequencies)
were used for training purposes and 20% (corresponding to
the distinct carrier frequency) for testing the performance of
algorithm.

B. Results

We applied dictionary learning to measured data from
different target classes in a similar manner to the simulation
data. We present the confusion matrix of the results of the
classification algorithm in TABLE II. In this particular case,

TABLE II
CONFUSION MATRIX FOR CLASSIFIER TRAINED AT FREQUENCIES-

2.5GHZ, 3GHZ, 3.5GHZ, 4GHZ AND TESTED AT 4.5GHZ. P IS THE
PREDICTED CLASS AND T IS THE TRUE CLASS.

T/P TH HB HHS TF
TH 100 0 0 0
HB 0 100 0 0
HHS 15 10 75 0
TF 0 0 0 100

TABLE III
CLASSIFICATION ACCURACY OF DICTIONARY LEARNING FOR EACH FOLD
USING MEASUREMENT MICRO-DOPPLER DATA CAPTURED AT MULTIPLE

CARRIERS

Cases Fold 1 Fold 2 Fold 3 Fold 4 Fold5 Average
TH 95 100 75 85 80 87
HB 85 100 85 100 100 94
HHS 85 75 85 80 100 85
TF 90 100 90 85 90 91

the classifier is trained with data from the following carrier
frequencies- 2.5GHz, 3GHz, 3.5GHz, 4GHz while the test
data is measured at 4.5GHz. The results show that the human
walking with a stick (HHS) and boxing human (HB) are
confused in 10% of the cases. This can be attributed to the fact
that Dopplers are directly proportional to the carrier frequency.
As a result, HHS at lower carrier is getting confused with HB
at higher carrier frequencies. Also HHS gets confused with the
two humans (TH) class in 15% of the cases. This is because,
in the two human case, there are some time instants when the
signal from the second target is very weak and therefore, the
radar incorrectly assumes that there is only a single mover
(usually the target closer to the radar) in the channel. In all
the other cases, the algorithm correctly classified each target
type with an accuracy of 100%. We performed a five-fold
cross validation and observed that the average classification
accuracy for TH is 87%, HHS is 85% while HB recorded
94% classification accuracy highest amongst all the classes as
shown in TABLE III. Average accuracy across five-folds for
TF was 91%.

V. CONCLUSION

In this paper, we used a sparse coding based dictionary
learning method to represent the micro-Doppler data from
indoor moving targets at multiple carriers for classification
purposes. We evaluated the performance using both simulated
data and measurement data and demonstrated a high classifica-
tion accuracy. The primary advantage of the proposed method
is that it is flexible and can be used to learn features under
diverse radar operating conditions. This provides a tremendous
advantage for deploying a reconfigurable radar that can be
adapted to challenges in real life scenarios.
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(a) (b)

(c) (d)

Fig. 4. Spectrogram using STFT of (a) a boxing human, (b) a human walking while holding a stick, (c) two walking humans-one walking towards radar and
other walking away from radar and (d) a rotating table fan at 4.0GHz
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