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Abstract—We present a framework for simulating realistic inverse
synthetic aperture radar images of automotive targets at millimeter wave
frequencies. The model incorporates radar scattering phenomenology of
commonly found vehicles along with range-Doppler based clutter and
receiver noise. These images provide insights into the physical dimensions
of the target, the number of wheels and the trajectory undertaken by
the target. The model is experimentally validated with measurement data
gathered from an automotive radar. The images from the simulation
database are subsequently classified using both traditional machine
learning techniques as well as deep neural networks based on transfer
learning. We show that the ISAR images offer a classification accuracy
above 90% and are robust to both noise and clutter.

Index Terms—ISAR, classification, automotive radar, transfer learning,
radar database

[. INTRODUCTION

With the advent of advanced driver assistance systems (ADAS),
automotive radars are becoming increasingly common on cars for
improving road driving conditions. These radars are used for multiple
applications such as automatic cruise control, pedestrian detection,
cross-traffic alert, blind-spot detection, and parking assistance [1]],
[2]. The main advantage of automotive radar over camera for object
detection and classification is that the radar can be operated in
low light conditions and fog. Secondly, these sensors are typically
cheaper than cameras and hence multiple of them can be mounted
around the periphery of the vehicle, usually behind the bumpers.
Finally, automotive radars operate at millimeter wave frequencies
with high bandwidths and spatially large antenna arrays. Hence, they
offer excellent range, Doppler, and azimuth resolution [3|]. Usually,
in these systems, the raw radar data cube is processed to provide
a collection of point scatterers corresponding to both vehicles and
clutter with range, azimuth, elevation, and Doppler information.
Direct object detection and classification based on this type of data
can be challenging since it is difficult to correctly cluster the point
scatterers belonging to the same object [4]. Instead, radar images
/ signatures directly processed from raw radar data provide more
effective features for automatic target recognition.

Classification of radar targets for a variety of application has
been researched over the last few decades [5]-[7]. Many different
types of radar signatures have been studied. For example, radar
micro-Doppler spectrograms, which are the joint time frequency
representations of time-domain narrowband radar data, have proven
to provide excellent features for classification. They have been
used for distinguishing between different types of human activities
[8]-[11]; armed and unarmed personnel [12]; ground vehicles and
pedestrians [[13]], [[14]]; and different types of airborne targets such as
unmanned aerial vehicles and birds. [[15]], [16] for diverse applications
like assisted living, elderly care and security, and surveillance.
With broadband radar data from frequency modulated continuous
waveforms, range-Doppler plots have been generated that have also
served as excellent features for target recognition [[17]. Other works
have used range-crossrange images generated through synthetic
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aperture radar (SAR) imaging for classification purposes [18]—[20].
However, SAR images are typically more suited for classifying
static targets since dynamic targets may distort the radar images.
The alternative is to use antenna array processing for obtaining
fine cross-range resolution. However, this requires a large array
with lots of antenna elements, and precise phase synchronization
across the multiple channel data [21]]. A third method for obtaining
fine cross-range resolution is to use inverse synthetic aperture radar
(ISAR) processing of single-channel broadband data.

When a dynamic target travels along a complex trajectory, the
target undergoes a combination of translational and rotational motion.
If the translational motion of a target can be correctly estimated
and compensated, then the Doppler dimension can be mapped to
cross-range to obtain ISAR images [22]. The cross-range resolution
is inversely proportional to the extent of the target aspect presented
to the radar during the rotational motion and the coherent processing
time interval. ISAR images, generated from range-Doppler plots
of dynamic targets, have been extensively researched over the last
two decades - especially for the detection and classification of
airborne targets and ships [23[]-[25]. In the automotive target scenario,
vehicles undergo complex turns, which can result in a large radar
aspect. Further, even while moving along a straight path, a slight
offset of the target vehicular trajectory from the ego radar, can
result in large radar aspects to get a fine cross-range resolution.
Since automotive short range radars are characterized by large
bandwidths (above 2GHz) and high carrier frequencies (77GHz)
that result in fine range and Doppler (or cross-range) resolution,
they are particularly suited for generating high resolution ISAR
images of vehicles. In ADAS systems, multiple auxiliary sensors
(gyrometers, accelerometers, other radars) are deployed on the ego
vehicle. Therefore, the translational motion compensation of both the
ego vehicle and target vehicle can usually be carried out without too
much difficulty. More recently, ISAR images of ground based targets
have been generated using turntable data [26]], ground based platforms
[27], [28]l, and from airborne platforms [29]]. However, these studies
have been restricted to very few targets. In our preliminary paper
in [30], we showcased how these images provide detailed insights
into the dimensions of vehicles and their trajectories. However, the
images were idealized and free of corruption from noise and ground
clutter.

Our contributions in this paper are as follows: First, we provide a
detailed simulation framework to generate realistic ISAR images of
automotive targets while incorporating the effects of additive noise
in the radar receiver and speckle noise due to ground clutter effects.
The main objective is to provide a simulation framework for rapidly
generating large volumes of radar data without the cost and man
hours involved in collecting measurement data. These data can be
used for training deep neural networks, which have recently emerged
as the algorithm of choice for classitying radar images 9], [11]], [19].
Secondly, the simulation framework can be integrated with software
test beds for rapid prototype development and validation. Finally, the
simulation models can be useful for understanding radar propagation
phenomenology in the environment and pin pointing cause and effect.
We have considered five commonly found targets - a full-size car,
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a mid-size car, a four-wheel truck, a bicycle, and an auto-rickshaw
(tuk-tuk). We generate ISAR radar images of these targets performing
different types of turns (right, left, and U-turn) as well as following
a straight trajectory.

Second, in real world conditions, there can be considerable clutter
arising from the rough road surface at millimeter wave frequencies,
which is proportional to the radar coverage area [31]l. Hence, this
range-based clutter cross-section increases with radar range. Further,
Doppler based clutter can arise due to wind [32]. The combination
of range and Doppler based clutter manifest as speckle noise and
can significantly distort the ISAR images. In this work, we have
incorporated detailed range-Doppler clutter as well as receiver noise
in our radar models to simulate realistic radar images. With this paper,
we release our database, consisting of over 30000 realistic ISAR
images, to the radar community at https://tinyurl.com/yyuwefrh.

Third, we demonstrate that these images show detailed information
of the type of vehicle, its dimensions, the number of wheels and
the trajectory followed by the vehicle. Further, we have validated
these simulated images with measurement data gathered from Texas
Instrument’s AWR 1843 77GHz automotive radar.

Finally, we demonstrate that the ISAR images offer distinctive
features for the classification of automotive targets. In particular, we
have considered both traditional machine learning algorithms such
as support vector machine (SVM) and random forest (RF)
as well as Alexnet and Googlenet, which are two transfer learning
based deep neural networks [35]. Our results show that the ISAR
images are successfully classified by the machine learning algorithms
successfully (with a precision and recall above 90%). The deep neural
networks outperform the traditional machine learning algorithms and
robust to noise and clutter.

The paper is organized as follows. In the Section [[I] , we present
the simulation methodology for modeling the scattered signal radar
signals from the automotive targets, as well as the noise and clutter
models. Then we describe the radar signal processing algorithms
for generating the ISAR images. In Section [, we present the
experimental set up for collecting measurement data for generating
ISAR images and present the measurement results. In Section [[V] we
present the classification results of the five automotive targets using
four different machine learning based algorithms - SVM, RF, Alexnet
and Googlenet. Finally, we conclude the paper with our final remarks
in Section [V]

II. SIMULATION METHODOLOGY

While several prior works have described simulation models of
pedestrians [36], [37], there are very few works that model automotive
vehicles along complex trajectories [38], [39]]. These works have
confined their scope to simulating high range resolution profiles
and micro-Doppler spectrograms. In this section, we discuss the
simulation methodology for modeling the scattered radar signals from
five common automotive targets - bicycle, auto-rickshaw, mid-size
car, full-sized car, and truck. Then we describe how these models
can be integrated into the radar waveform to obtain ISAR images.
Finally, we present the method to incorporate noise and clutter in the
images.

A. Automotive Animation Model

We imported freely available three-dimensional (3D) computer
aided design (CAD) modelsﬂ of the automotive targets into Blender
software. Then, we rendered the metallic parts of the automotive into
triangular facets. An accurate rendering of the target capturing the
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diversity of features on the chassis of the vehicle is realized by using
a large number of facets. In our work, the bicycle and auto-rickshaw
are rendered with 3919 and 6949 facets, respectively; the mid-size
and full-size cars with 6905 and 19964 facets, respectively while
the truck is rendered with 7206 facets as shown in Fig[T] We have
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Fig. 1: Three-dimensional automotive targets with triangular facets used
for the simulation. (a) Auto-rickshaw (tuk-tuk), (b) full-sized car (c)
mid-sized car, (d) truck (e) bicycle

considered a four-way traffic junction, where lanes from the north
(N), south (S), east (E), and west (W) meet as shown in FigZh. The

Fig. 2: (a) Road geometry of four-way traffic junction. (b) Trajectories
undertaken by the automotive target in a four-way junction - (i) Right
turn, (ii) Left turn, (iii) U-turn and (iv) Straight through.

targets are assumed to stand on the XY ground plane which is aligned
with the N-S and E-W directions with the height along the Z-axis.
The ego radar is assumed to be static and fixed at (0,0, 0.5)m along
the south road. A total of 16 different trajectories are possible at this
junction. They are the four right turns (S to E, E to N, N to W, W
to S), four left turns (S to W, W to N, N to E, E to S), four U-turns
(StoS,EtoE, NtoN, W to W) and four straight through (S to N,
Nto S, WtoE, E to W) as shown in FigZp.

Now, we describe the method for animating the vehicle along a
desired trajectory at a specified speed. We first identify the center of
the vehicle 7 and fix it at the starting position along a trajectory.
Then, we identify way points along the distance of the trajectory
such that the time taken for the vehicle’s center to travel between
any two way points is fixed (£7) as shown in Fig[3h. The sampling
time instants corresponding to these way points are indicated by
f = 1,2,--. F. Therefore, the center of the vehicle undergoes
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Fig. 3: Animation model of trajectory: (a) Way points along the trajectory
that will be traversed by the center of the vehicle; (b) wheels rotational
angle calculation. .

translational displacement Vr[f] = 7c[f]—7c[f—1] at each f. Now,

the target is composed of B triangular facets where the centroid of
each facet is 7,,b = 1 : sB. Based on the rendering of the vehicle,
we obtain displacement vectors (ﬁrb) of these centroids from the
center of the vehicle. These displacement vectors are fixed with time
since the chassis of the vehicle behaves as a rigid body (excepting
the wheels). Now, the vehicle must undergo rotational motion along
with translational motion. This rotational motion at each frame f is
described in terms of the yaw (rotation angle about the Z axis, 0 [f])
which is computed from

yelfl —yelf —1]
zolf] —zclf — 1]

The position of the facet centroid on the chassis of the vehicle is
/1= (Ropp7slf — 1) + Vrlf], )

where Ry is the Euler rotation matrix for a yaw of 6. In the case of
wheels, a facet centroid on the wheel undergoes additional rotation due
to the motion of the wheel. The angular displacement of the wheel is
proportional to the distance travelled by the wheel and the radius of the
wheel r,, as shown in

0[f] = arctan ( D
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The axis of this wheel rotation is obtained by the cross product of the
direction of translational displacement and the height axis. The total
displacement of a point on the wheel is

7[f] = (Rap Rops7elf — 11) + Vrlf, )

where R, is the Euler rotation matrix corresponding to a pitch angle
of a. The entire algorithm describing the animation motion modeling is
summarized in Algorithm][T]}

B. Electromagnetic Model of Radar Scattering

Automotive radars use linear frequency modulated (LFM) waveforms
for detection and tracking of targets. We consider a radar transmitting an
LFM waveform,

s (1) = rect (

) ej27rfc7‘€j7rK7'27 (5)
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with f. carrier frequency (and wavelength \.) and a chirp rate K. In the
above expression, rect(-) indicates that the transmitting signal is defined
for a pulse repetition interval of Tpr;. We model the automotive target
as a collection of moving scattering centers, b = 1 : B, located at the
centroids of each of the facets on the vehicle. The time-varying range
for each scattering center is 7, = Rj + vpt, where Ry is the starting
distance from the radar. The radar signal scattered back from a single
point target is Doppler shifted by fp, = % due to the target’s relative
radial velocity (vp) with respect to the radar. The received radar signal,
after downconversion to the baseband, is written in terms of slow time ¢
and fast time, 7 as

Algorithm 1: Animation model of vehicle along desired
trajectory

Data: Fixed displacement vectors corresponding to facet
centroids on the chassis and wheels of the vehicle
(ﬁrb, b+ 1 : B) with respect to the center of the
vehicle (7¢).

Data: Specify way point positions for center of vehicle along
trajectory: 7c[f], f = 1 : F. Time duration between
two way points is fixed (Zy).

Result: Time-varying position coordinates of facet centroids

on vehicle (7[f]l,b=1:B,f=1:F)
1 Initialization: Initialize positions of all the facet centroids
(1] =7e[l] + Vr, b=1: B;
2 for f=2:F do
3 Compute displacement between two consecutive way

points Vr[f] = 7olf] — Fe[f — 1)

: P _ _yclfl=yclf]
4 Compute vehicle yaw rotation: 0[f] = e R s
5 if Facet centroids on chassis then
6 Perform Euler rotation on facet centroids
7 [f] = (RoipTf — 1]) + Vr[fl,b=1: B;
7 else if Facet centroids on wheels then
8 Compute rotation of wheel «[f] = % where 74,
is the radius of the wheel.;
9 Compute axis of wheel rotation which is

perpendicular to the plane defined by height axis and
vehicle translational motion direction.;

10 Perform Euler rotation on facet centroids on wheel
based on wheel rotation axis .

#lf] = (Raiy Rogilf — 1) + Vrlfl,b=1: B

11 end
12 else
13 end
14 end
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where 7,(t) = m%m is the time delay to the target. In the equation
above, v denotes the additive noise that will be discussed in greater detail
in the following section. The strength of the received returns, denoted
by ay, is obtained through the radar range equation by incorporating the
transmitted power (P*®), the gains of the transmitting (G**) and receiving
radar antennas (G"?), the radar cross-section of each scatterering center
(op) and the distance of the point scatterer from the radar, as shown in

ptz Gtac Gre Ub)\z
(4m)3r

ap = (7
In (@) and (7), we have assumed stationary channel conditions and direct
path target returns without any type of multipath. The RCS of a flat
metallic triangular plate is a function of the radar aspect angle (6;), the
plate area (Ap) and long dimension (d), [40], as shown in
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The aspect angle is computed from the dot product of the incident vector
from the radar to the plate and the normal vector of the plate. Not all
scattering centers may be visible to the radar. Since 6, changes along
the target trajectory, o, fluctuates. Hence, we incorporate a Bernoulli’s
random variable, n, with a 50% probability of visibility to the radar.
The radar data is sampled at a frequency of Fs = 1/6t and the fast
time samples are numbered from 1 : N. Similarly, if we consider a pt"



coherent processing interval (CPI) consisting of M PRIs, then the discrete
representation of (@) is
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where n;, is the integer rounded from T‘gg)

We process the received signal using stretch processing, a variation of
matched filtering which is especially suited for low sampling frequencies
[41]. The maximum unambiguous range of the radar, Ry,qz, is equal
to <LERL For every CPI, we consider a radar range span of interest,
Ry — % : Ro + Rg% within R4, Where Rg is called the central
reference position (CRP). The time delay to the b'” point scatterer can be
expressed as 7, = 10 + d7(¢t) where 79 = @ corresponds to the time
delay to the CRP. Since, the target motion is known, the CRP is chosen to
correspond to the mean range to 7 in every CPIL. In stretch processing,
the received signal is multiplied with e—77K5t%(n=70)% \here ny is the

integer rounded from 3% over every PRI Thus, we obtain

Sp%[n,m] = ap[m]e—3 T By o~ mKSF (no—my)?  —i2mm D, Tp R 10
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We carefully compensate for the translational motion of the vehicle, and
only consider the rotational motion of the point scatterer within a CPI.
Then, the first two exponential terms in @) are constant phase terms
and are absorbed into the amplitude during further processing. The last
two terms show the variation of the two-dimensional (2D) signal over
slow and fast times, as shown in

Sr*m,n] = ap()e I3 Dy TP RI o= j4TK6t?n(no—np)

an
The fast time sampling frequency (Fs = 1 /J}tg is obtained from
twice the stretch bandwidth which is QRS% where Rspan 1S
much lower than R;,... Therefore, stretch processing results in lower
sampling frequency requirements than ordinary matched filtering where
the sampling frequency is atleast twice the bandwidth of the transmitted
signal (KTpRry = M).

When the target is an extended target with multiple point scatterers
(B), then the received signal is obtained by the sum of the returns from
each scatterer.

B
§7[m,n] =Y ;% [m, ). (12)
b=1

Here, we have ignored the multiple scattering between the different parts
of the target. The output is processed using 2D Fourier transform to obtain
range-Doppler ambiguity plots,

x[fp,r] = DFT2p{S™*m,n]}, (13)
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where the range dimension r spans N steps from Rg — to

Rspan . 1 1
Ro + —*5**; and fp spans M steps from ~STony

to
2D plot can also be interpreted as a range-cross plot {X [r, ci]T)Pngovided
an accurate estimate of the angular velocity (w) of the target is available,
since translational motion has been compensated. We estimate w for every
pt" CPI by the change in yaw (©) of the vehicle as shown in

L _Gk-ep-1 (14
Tcpr
Then the Doppler axis is converted to the cross-range axis by
Ac
cr[m]:fD[m]><2—,f0rm:O:M71. (15)
w

Depending on w, the cross-range spans across images may vary even
when the pixel dimensions of the plot remain unchanged.

TABLE I: Automotive radar parameters for generating ISAR images

Parameters | Simulation | Measurement
Carrier frequency (27 fe) 77GHz 77GHz

stretch Bandwidth (TS)lsw ) SMHz 2GHz

Sampling Frequency (F%) SMHz SMHz

Chirp rate (K) 60 x 1012 Hz? 7.5 x 1012 Hz?
Chirp duration (Tprr) 83.33us 400us

Coherent processing interval | 0.1s 0.1s

(Tepr)

Transmitted power (P;) 25dBm 14dBm

C. Noise and Range-Doppler Clutter Models

In this section, we discuss how we incorporated ground based clutter
along the range and wind based clutter along the Doppler dimensions
along with additive noise in the time-domain data.

Ground clutter: For a rough surface, the clutter cross-section is
proportional to the surface clutter coefficient, 0¥, and the radar coverage
area. A stable component - due to static road conditions such as road
material - and a fluctuating component due to wind contribute to o
[32], [42]:

00 = Ugtable + U?luctuating‘ (16)

We model ¢° as an exponential random variable with a mean of -15dB
which corresponds to asphalt at millimeter wave frequencies [43]. The
radar coverage area is proportional to the antenna beamwidth (0gw ),
razing angle (v), radar range resolution (6r = 5—<—) and range.
"g}heref%)re, ic is ¢ HTpnt ¢

oe = a1y orsecip. (17)

This results in a ground clutter that is a function of range as shown in

PtrGrGErea00 gy o sec
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‘We have maintained the radar at a height of 0.5m above the ground from
which the grazing angle can be computed for every range 7.

Doppler clutter: Based on [32], the power spectrum of the Doppler
clutter can be modeled as a low pass filter response. When combined
with the range related clutter, we obtain

f s —1
Clfp,r] = Colr] [1 + (A—?D> }

where s is a function of the average wind velocity (U) as shown in
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In (T9), Afp is the —3dB width of the spectrum and is given by
Afp =123 (%) Uts. 2D

Based on local meteorological reports [44]], U can vary from Om/s to
10m/s. We consider four possible wind speeds (2.5, 5, 7.5, 10m/s) in our
simulations. Finally, we convert the power values obtained from (T9) to
voltage values for each range-Doppler pixel (c[fp,r]). We multiply the
voltage with a phase modeled as a complex circularly symmetric random
variable (¢[fp, r]). This complex clutter signal (c[fp,r|exp(§é[fD,7]))
is then added to each pixel of the range-Doppler ISAR images x|[fp, 7]
in (03).

Noise: While clutter was modeled as a speckle noise in the radar
images based on the above description, we modeled noise as an additive
white Gaussian N (0, Np) in the time-domain radar returns in (&). Based
on our radar range equation in (7)), the minimum received signal at the
radar is —80 dBm. Based on the ratio between the minimum received
signal at the radar and the mean noise floor, we considered four different
signal to noise ratio (SNR) scenarios from —5dB to +10dB in our
simulations.



D. Database of Simulated Data

We present examples of ISAR images of each of the targets below. For
all five automotive targets (bicycle, auto-rickshaw, mid-size car, full-size
car, and truck), we present two sets of results. The figures on the left show
the ISAR images corrupted by additive noise in the receiver data due to
receiver electronics. We present the set of images corresponding to an
SNR of +10dB. The figures on the right show the ISAR images corrupted
by range-Doppler clutter that give rise to speckle noise. The clutter
strength, in this scenario, is a function of the surface reflection coefficient
of the road and the wind speed. We present figures corresponding to a
wind speed of 2.5m/s. In all of the figures, each row corresponds to
images simulated for a distinct trajectory. The top row is obtained when
the vehicle moves along an almost straight trajectory from N to S; the
second row shows the trajectory of a target taking a left turn from E
to S; the third row shows the trajectory of a target taking a right turn
from S to E; while the fourth row shows the trajectory of a target doing
a U-turn from W to W. The range span (Y-axis) in all the figures is
20m and is centered along the CRP corresponding to the specific CPI.
The cross-range span (X-axis) in all of the figures may vary from 10m to
20m and is centered at Om. The cross-range axis correlates to the Doppler
axis of x[fp,r]. The noisy images on the left are of a dynamic range of
50dB from —40dBm to —90dBm. While, the images on the right are
of a dynamic range of 80dB from —40dBm to —120dBm.

We, first, present the ISAR images of a bicycle in Figld] As mentioned
earlier, the images in FigE]a correspond to the ISAR images corrupted
by noise while the figures on the right correspond to the ISAR images
corrupted by range-Doppler based clutter. The bicycle is a spatially
narrow target and hence appears as a cluster of very closely spaced
scattering centers almost like a single point scatterer. The dimensions
of the target can be estimated from some of the images (for example,
sub-figure vi). The noisy images on the left show that at some range
positions, the target becomes difficult to discern due to low returns from
the bicycle, especially when it is far from the radar. This is because
of the low RCS of the bicycle. The cluttered images on the right show
strong clutter at DC (corresponding to Om along the cross-range). The
width of the Doppler spectrum and the strength of the clutter returns
change depending on the wind speed. The bicycle can still be discerned
in some of the images along with the micro-Doppler tracks due to its
wheel (sub-figures xi and xiv in (b)).

Next, we present the ISAR images of an auto-rickshaw in FigE] The
images show that the auto-rickshaw is a spatially larger target than the
bicycle. The shape of the vehicle is triangular in the top-view. In fact,
in some of the top-view images (sub-figure vi), we can clearly see the
dimensions of the vehicle. We also see considerable distortions along the
Doppler (cross-range) dimension due to micro-Doppler from the rotation
of the wheels. Interestingly, in some images, we can see three distinct
micro-Doppler tracks from the three wheels (sub-figure xi in (b)). On the
top row, we observe that the longer dimension of the target’s top view is
oriented along the range dimension when the car moves from N to S. In
the second row, the target is first oriented laterally and then turns length
wise. This is because the target did a left turn from E to S. Similarly, in
the third row, the target was first oriented along the long direction and
then along the lateral direction as the target moved from S to E. Finally,
in the last row, the target is always along the lateral direction since it
does a U-turn from W to W. Therefore, the ISAR images offer some
indication of the type of trajectory undertaken by a target.

Figure@ presents the results of the mid-size car. Since this is a larger
target than the auto-rickshaw, the returns are stronger. We are able to
see the top view of the target with all four sides. Again, we observe
some micro-Doppler based distortions along the cross-range due to the
micro-Doppler returns from the four wheels. Four distinct micro-Doppler
tracks are observed in the sub-figure x and xi in Fig[6p. Again, we observe
the longer dimension of the car oriented along the range dimension when
it is moving from either N to S or S to N. But the longer dimension of
the car is oriented along the lateral dimension when the car is moving
from E to W or vice versa.

The results in Fig[7] corresponding to the full size car look similar to
those from the mid-size car in Fig[f] except for the larger dimensions of
the car in the top-view. The dimensions of the full size car are 5.7m x

2.4m whereas those of the mid-size car were 4.4m x 1.7m. The larger
target also has stronger returns and is thus easily discerned in the images.
Again, we are able to observe four distinct micro-Doppler tracks from the
four wheels in some of the images (sub-figures ix-xii in Fig[7p). Also,
we are able to see the changes in the orientation of the images as the car
undergoes turns along its trajectory.

The largest automotive target that we have considered is the four
wheel truck, for which, the results are presented in Fig@ Due to its
large size, the top-view obtained from the ISAR images clearly present
the dimensions of the target which are 8.5m x 2.6m. We are also able
to observe the changes in the target orientation along the four distinct
trajectories. The micro-Doppler distortions are considerably greater in
this case due to the large wheel radii and four micro-Doppler tracks in
sub-figures xi in Fig[§] are well resolved in this case.

We list the complete set of simulated ISAR images in Table[lll To

TABLE II: Simulated ISAR image database

Type of images Types of | Trajectories| Images Total
Targets (#) per images
(#) trajectories | (#)

Ideal Images 5 16 45-49 3750

Noisy 1images of | 5 16 45-49 14976

SNR  (+10,45,0,-5

dB)

Cluttered Images | 5 16 45-49 14976

with wind velocities

(2.5,5,7.5,10 m/s)

summarize, we have considered five automotive targets - full-size car,
mid-size car, truck, auto-rickshaw, and bicycle. Each target undergoes 16
trajectories, and each trajectory is of 5 seconds duration. Since each CPI
is 0.1 seconds, we obtain between 45 and 49 images from each trajectory.
Therefore, we obtain 3750 clean images that are free of noise and clutter.
Then we corrupt these images with additive white Gaussian noise in the
time-domain to obtain noisy images with SNR ranging from —5 to +10dB
resulting in 14976 noisy images. Similarly, we introduce range-Doppler
clutter with four different wind speeds (U) ranging from 2.5 m/s to 10
m/s to obtain 14976 cluttered images. With this paper, we publicly release
this data set to the research community at https://tinyurl.com/yyuwefrh.

III. MEASUREMENT DATA

In this section, we use Texas Instruments AWR-1843, a 77GHz
millimeter-wave radar shown in Fig[0h, to collect the experimental data,
to validate the simulation results. We configured the radar to operate in
an ultra-short range radar (USRR) mode. The configuration parameters
that we used for our measurement are listed in Table[l We have chosen
parameters to closely align with those used for the simulations in the
previous section. The transmitted power from the radar is 14dBm and
the noise floor of the receiver is approximately -110dBm. We considered
two types of automotive targets as shown in Fig[0p and c. The first is a
small-sized car - Maruti Suzuki Celerio - of 3.695m x 1.600m x 1.560m
dimensions. The second is a 1.8m tall pedestrian. Each target moves
independently in the channel. We considered two trajectories as shown
in Fig[TOh and Fig[TOp. In the first trajectory, the car moves along a
straight path a little left to the radar and then executes a left turn at an
average speed of 10 kmph. In the second trajectory, the car moves along
a tangential path before the radar from right to left at an average speed
of 18 kmph. The same trajectories are repeated by a pedestrian with an
average speed of 15 kmph in both cases.

For both cases, we perform range compensation using estimates from
the prior knowledge of the trajectory. Based on the motion of the target,
we estimate the angular velocity of the target for every CPL In real
world scenarios, where the trajectory of the target and its velocity are
not known a priori, a second radar or auxiliary sensor can be used to
estimate the range and velocity as described in [28]. Then, we perform
matched filtering along the fast time and Doppler processing along the
slow time to obtain ISAR images of the target for every CPI. The ISAR
images of the car moving along the straight trajectory from left to right
are shown in Fig[TTh.i-iv. All the images have been normalized, and the
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Fig. 4: ISAR images of a bicycle of (a) +10dB SNR, (b) with range-Doppler clutter with wind velocity 2.5 m/s at CPI frames corresponding to 1.5,
2.5, 3.5, 4.5s along following trajectories: (i-iv) straight path from north to south, (v-viii) left turn from east to south (ix-xii) right turn from west
to south and (xiii-xvi) U-turn from west to west. The range span is 20m while the cross-range span varies from 10m to 20m. The dynamic range
for SNR is 50dB (-40dBm to -90dBm) and for clutter 80dB (-40dBm to -120dBm).

due to wheels

(a)

(d)

Fig. 5: ISAR images of an auto-rickshaw of (a) +10dB SNR (b) with range-Doppler clutter with wind velocity 2.5 m/s at CPI frames corresponding
to 1, 2, 3, 4s along following trajectories: (i-iv) straight path from north to south, (v-viii) left turn from east to south (ix-xii) right turn from south
to east and (xiii-xvi) U-turn from west to west. The range span is 20m while the cross-range span varies from 10m to 20m. The dynamic range for
SNR is 50dB (-40dBm to -90dBm) and for clutter 80dB (-40dBm to -120dBm).

dynamic range is 25dB. The images show the top-view dimensions of
the vehicle along the range and cross-range dimensions. We observe the
different positions of the car along the cross-range across the four images.
From the dimensions in the figure, we observe that the car is oriented with
its longer dimension along the cross-range. The images corresponding to
the car making a left turn are shown in Fig[TTh.v-viii. Here, we observe
the longer dimension along the range in the first two figures and then
the car orients along the cross-range in the last figure. In some frames,
we observe a large spread along the cross-range dimension due to the
micro-Dopplers arising due to the wheel motions.

Fig[TTp. shows the ISAR images of the pedestrian along the two

trajectories. The top row shows the images when the pedestrian is
moving along the first trajectory, while the bottom row shows the images

corresponding to the second trajectory. The pedestrian, unlike the car, is
very narrow along the range and cross-range. Hence, he appears like a
point scatterer in the images. It is far more difficult to infer the trajectory
of a pedestrian than a car from the ISAR images. The spread along
the cross-range is due to the micro-Dopplers arising from the swinging
motions of the arms and legs. The ISAR images generated from the
measurement data show significant differences between the pedestrian and
the car. Hence, they corroborate our earlier hypothesis that ISAR images
offer distinctive features of targets that may be useful for classification
purposes.
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Fig. 6: ISAR images of mid-size car of (a) +10dB SNR, (b) with range-Doppler clutter with wind velocity 2.5 m/s at CPI frames corresponding to
1, 2, 3, 4s along following trajectories: (i-iv) straight path from north to south,(v-viii) left turn from east to south (ix-xii) right turn from south to
east and (xiii-xvi) U-turn from west to west. The range span is 20m while the cross-range span varies from 10m to 20m. The dynamic range for
SNR is 50dB (-40dBm to -90dBm) and for clutter 80dB (-40dBm to -120dBm).
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Fig. 7: ISAR images of full-size car of (a)+10dB SNR, (b) with range-Doppler clutter with wind velocity 2.5 m/s, at CPI frames corresponding to
1, 2, 3, 4s along following trajectories: (i-iv) straight path from north to south, (v-viii) left turn from east to south (ix-xii) right turn from south to
east and (xiii-xvi) U-turn from west to west. The range span is 20m while the cross-range span varies from 10m to 20m.The dynamic range for
SNR is 50dB (-40dBm to -90dBm) and for clutter 80dB (-40dBm to -120dBm).

IV. CLASSIFICATION RESULTS

In this section, we use classical machine learning techniques - support
vector machine (SVM) and random forests (RF) - and more recent deep
learning algorithms based on transfer learning - Alexnet and Googlenet
- for classifying the five automotive targets on the basis of their ISAR
images. We will examine the impact of noise and clutter and the volume
of test and training data on the classification performance .

A. Effect of noise and clutter on classification performance

Based on Table[ll] of the total volume of 14976 images for different
SNR values, 70% are used for training and 30% for testing in the case of
SVM and RF. In the case of Alexnet and Googlenet, we split the 30% data

that are not used for training between validation and testing. The resulting
classification accuracy for different SNR values is shown in Fig[T2h. We
first observe that the classification accuracy for all algorithms is above
75% even for low SNR of —5dB. The accuracy for SVM and RF are
significantly poorer than those obtained from Alexnet and Googlenet at
low SNR (-5dB). The classification accuracy improves for all cases as the
SNR increases. The performances of Alexnet and Googlenet hold steady
(above 80% for Googlenet and 90% for Alexnet) for all cases.

We perform a similar study where we examine the effect of clutter
on the classification performance of the ISAR images. The clutter along
the range is modeled using a mean surface clutter coefficient. As the
range increases, the area of coverage increases resulting in greater clutter.
Wind gives rise to Doppler based clutter along the cross-range dimension.
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(b)

Fig. 8: ISAR images of truck of (a)+10dB SNR, (b) with range-Doppler clutter with wind velocity 2.5 m/s, at CPI frames corresponding to 1, 2,
3, 4s along following trajectories: (i-iv) straight path from north to south, (v-viii) left turn from east to south (ix-xii) right turn from south to east
and (xiii-xvi) U-turn from west to west. The range span is 20m while the cross-range span varies from 10m to 20m. The dynamic range for SNR

is 50dB (-40dBm to -90dBm) and for clutter 80dB (-40dBm to -120dBm).
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(b)

Fig. 9: Experimental setup for gathering ISAR images of (a) Radar hardware, (b) a small sized car, (c) pedestrian, undertaking a left turn along their

trajectory.

(a) (b)

Fig. 10: Experimental setup for gathering ISAR images of (a) a left turn
trajectory before the radar, (b) tangential trajectory before the radar.

Higher wind velocities (U) give rise to greater clutter. Again, we have
assumed a 70-30 split between training and test data for SVM and RF
and a 70-15-15 split between training, validation, and test for Alexnet
and Googlenet. We show the variation of the classification accuracy
with respect to mean wind velocity in Fig[I2p. We observe that the
classification performance for all the algorithms is fairly high (above
85%) even for high values of clutter arising from high wind speeds
(10m/s). The performance of the two transfer learning based algorithms
(Alexnet and Googlenet) remains consistent even for the high values

of clutter. On the other hand, we observe a slight deterioration in the
performance of the two classical machine learning techniques with higher
clutter values. The results indicate that the ISAR images offer highly
discriminatory features for classification, even in the presence of high
noise and clutter.

B. Effect of test and training percentages

In Table[Tl} we report the classification results for the four algorithms -
SVM, REF, Alexnet and Googlenet - for different percentages of training,
testing and validation data. For each case, we have performed 5-fold
cross-validation. We first consider the data that are just corrupted by
noise (SNR varying from +10dB to —5dB). Then we repeat the tests
on data that are just corrupted by only clutter (wind velocities varying
from 2.5 to 10m/s). Finally, we repeat the tests on data that are corrupted
by both noise and clutter. We observe that the performances for all the
cases are above 87%. Since, the training data is very large; the algorithms
perform well even when the training and testing are split evenly. We do
not see a significant improvement in the performance with an increase in
training data. The transfer learning algorithms like Alexnet and Googlenet
perform very well even for low SNR and high clutter.

In the following section, we present the confusion matrices obtained
from the classification of data combining both noise and clutter. These
results are obtained using 70% training data. For each case, the rows
show the true labels of the data, while columns show the labels of the
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Fig. 11: ISAR images of (a) car (i-iv) along the tangential trajectory, (v-viii) along the left turn trajectory; (b) Pedestrian (i-iv) along the tangential
path with approx speed of 15 kmph (v-viii) along the left turn path with approx speed of 15 kmph. The range span is 20m while the cross-range

span varies from 10m to 20m. The dynamic range is 25dB.

Classifier | Training (%) | Testing (%) | Validation (%) | SNR | Range-Doppler Clutter | Combined
70 30 - 92.4 93.8 88.6
SVM 60 40 - 92.2 93.7 88.1
50 50 - 92.3 93.3 87.7
Random 70 30 - 90.9 93.3 91.9
Forest 60 40 - 90.6 93.2 91.9
50 50 - 90.9 92 90.8
70 15 15 96.7 99.9 98.1
Alexnet 60 20 20 96.4 994 98.1
50 25 25 95.5 97.7 97.3
70 15 15 95.9 99.2 97.6
Googlenet 60 20 20 94.7 99.2 97.3
50 25 25 94.4 98.6 97.2

TABLE III: Classification of ISAR images using classical machine learning algorithms - SVM and random forest, and deep learning based

algorithms - Alexnet and Googlenet
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Fig. 12: Classification accuracy of automotive target ISAR images
using SVM, random Forest and transfer learning algorithms based on
Alexnet and Googlenet for (a) differing SNR values and (b) different
range-Doppler clutter values. 70% data used for training and remaining

data used for validation and testing.
predictions. We present three metrics with each confusion matrix. They

are precision, recall and the F; score. Precision is defined as the ratio
of the true positives (the highlighted number along the diagonal) over
the sum of the true positives and false positives (column sum); while
recall is defined as the ratio of the true positives over the sum of the true
positives and false negatives (row sum). For each case, we also provide
the F1 score, which is defined as the harmonic mean of average precision
and average recall,

2avg.precision X avg.recall

F = (22)

avg.precision + avg.recall

The first confusion matrix is presented for the SVM in Table[TV] We
observe the least confusion for the truck. Due to its large dimensions
and strong returns, the truck is rarely mistaken for any of the other
targets or vice versa. Similarly, the bicycle is very small and hence
not easily confused with the other targets. However, due to its weak

returns and small size, sometimes, the bicycle is not easily discernible in
noisy images. The two cars are often confused by each other due to the
similarity in their dimensions, the number of wheels, and their strength of
returns. The mid-size car, especially, has the lowest precision and recall
because it is most similar to both full-size car and the auto-rickshaw. The
Fy score for SVM is 88.6%.

We observe a similar result for the RF classifier in the second matrix
in Table[TV] Again, the best precision and recall are observed for the
large truck and the small bicycle. The results of the bicycle are slightly
worse than the truck because of its weak returns, which get affected when
the noise floor is high. Again, the two cars are confused by each other.
However, this time, the results for the full-size car have significantly
improved while those of the mid-size car have only slightly improved.
There is a noticeable improvement in the performance of the Alexnet
classifier, compared to the traditional machine learning algorithms for all
cases, as reported the third matrix in Table[I[V] Here, both the precision
and recall for all the cases is above 95%. Thus the two cars are no
longer significantly confused by each other. The confusion between the
auto-rickshaw and mid-size car has also substantially decreased. The same
improvement is also observed for the Googlenet classifier as seen in the
fourth matrix in Table[[V] Again, the accuracy are above 95% for all
five cases, both precision and recall. The F scores for RF, Alexnet, and
Googlenet are 92%, 98.1% and 97.6%, respectively.

V. CONCLUSION

We have demonstrated an automotive radar simulation framework that
incorporates radar scattering phenomenology of commonly found round
vehicles as well as range-based surface clutter and Doppler based wind
clutter and additive receiver noise. Using this simulation framework, we
have demonstrated that high-resolution ISAR radar images, characterized
by fine range and cross-range resolution, of dynamic automotive targets,
can be generated with millimeter-wave automotive radars. A large
database of over 30000 images has been publicly released to the
radar community. The simulation framework has been verified through



Predicted Labels

Vehicle Auto-rickshaw | Bicycle | Full size car | Mid size car | Truck | Recall
Auto-rickshaw 3 41 96 2 92.1
Bicycle 24 17 72 3 93.6
True ?
Labels Fqll size car 48 39 34 82.5
Mid size car 111 112 146 79.8
Truck 14 2 56 95.1
Precision 89.4 91.5 85.0 79.6
[ RE ] Predicted Labels
Vehicle Auto-rickshaw | Bicycle | Full size car | Mid size car | Truck | Recall
Auto-rickshaw 14 13 96 0 93.2
Bicycle 4 11 63 2 95.6
True Full size car 29 34 _ 145 7 88.0
Labels Mid size car 65 130 67 2 85.6
Truck 3 4 24 18 97.2
Precision 94.3 90.4 93.2 83.0
[ Alexnet | Predicted Labels
Vehicle Auto-rickshaw | Bicycle | Full size car | Mid size car | Truck | Recall
Auto-rickshaw 1 0 2 0 99.7
Bicycle 0 1 1 0 99.8
True Full size car 3 1 _ 5
Labels Mid size car 5 40 5 0
Truck 2 0 4
Precision 98.9 95.5 98.9 98.0
! Predicted Labels
Vehicle Auto-rickshaw | Bicycle | Full size car | Mid size car | Truck | Recall
Auto-rickshaw 0 8
Bicycle 0 0
True Full size car 0 3 _
Labels Mid size car 0 37 2
Truck 0 0 8
Precision 100 95.7 98.0

TABLE IV: Confusion matrices from SVM, RF, Alexnet and GoogleNet classifiers based on 70% training, 15% validation and 15% test

data.

experimental data gathered with a real automotive millimeter-wave radar

from

Texas Instruments. These images provide meaningful information

about the dimensions of the vehicle along the top-view as well as the
number of wheels and the trajectory undertaken by the vehicle in the

case

of larger vehicles such as auto-rickshaws, cars, and trucks. Smaller

targets such as pedestrians and bicycles, on the other hand, more closely
resemble single point scatterers. These images facilitate highly accurate
target classification (above 90%) with both traditional machine learning
techniques as well as the more recent deep neural networks.
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