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ABSTRACT long as the users have the information on which appliance

operational, they can take an informed decision whether to tt

The objective of this paper is to estimate if an electrical appliance ff or not. Also, NILM techniques claim to be capable

is OONO based on their common mode electromagnetic (CM EMI}. . ) _
emissions. The assumption being that, a user by knowing the stat (;f;ggrsvgztrm?e;;wercho?r?:n;?ﬂgg ?;estg;/e;il &?ggaggefec'
of the appliance can make an informed decision whether to keep iﬁntervgls of time Agfew household a Iiancesq such as ele
running or switch it off to save power. Here, state estimation of @i0asters and irohs are simple on/of?ploads tfwat show a <
single appliance is formulated as a classification problem. A New, ~ease in the o,wer COI’]SFl)Jm tion when switched on T
technique calledanalysis dictionary learningis proposed to b % ified 'hé) hered f :

generate features from CM EMI. The proposed method patteHrns can be | en;n 'ﬁ W't.d at_al gatdere rom slmartl_m
outperforms feature extraction based on deep learning techniquegg]‘ owgverl, m07tf?|t g resL e”“ah%'? colmmerua ?pp 'af
as well as a state-of-the-art information theoretic feature 5 < not simple on/off loads. They exhibit multi-state (refrigere

. . o S AC, washer, etc.) or continuously time varying (CPU, print
ag;ﬁitzlgtrilontechmque based on Conditional Likelihood etc.) power consumption behavior [4]. Detecting the operatio

these appliances has challenged researchers in the past few

Multi-state loads can be modeled by stochastic finite ¢
CCS Concepts machines (Factorial Hidden Markov Model or Product
Experts), but the continuously varying loads are hard to mods
such classical techniques.

¥ Computing methodologies ¥ Machine learning ¥ Learning
paradigms ¥ Supervised Learning ¥ Applied computing ¥
Physical sciences and engineering ¥Electronics.

In recent years, an alternate technique to smart meter sensit

Keywords emerged as a viable method for detecting time-varying pc
Non-intrusive load monitoring; supervised learning; dictionary Patterns in appliances. The method utilizes unic
learning. electromagnetic emissions, generated by the switched 1

power supplies within the appliances, to infer appliance usac
1.INTRODUCTION the power lines [5-7]. The electromagnetic emissions are of

Residential and commercial buildings account for 40% of the tyPes: the differential signal between the phase and neutral ¢
global energy consumption [1]. With the rapid growth in lines; and the common moc!e signal between these lines ar
infrastructure, there is an urgent need to reduce energy®a'th. The common-mode signal was demonstrated as a far
consumption. The twin goals for long-term energy sustainability fobust feature vector for classification in comparison to
can be identified as (1) use of energy efficient appliances todifferential signal in [6]. This is because of the primary po
reduce energy consumption (2) reducing energy consumptionSignal (110V/230V) and its harmonics, which interfere hea
through appliance identification and optimizing appliance With the differential signal [6], are not present in the comm
operations in non-working hours. In this work, we are focusing on Mede signal measurements. Also, most appliances, today
the latter goal, where the objective is to accurately detect andréquired to be fitted with high-quality differential mode filters t
classify appliances that are operational on a power line. Broadly,/€9ulate their emissions. Therefore, Differential Mc
this work falls under the area of Non-intrusive load monitoring El€ctromagnetic (DM EMI) emissions form an unreliable feat
(NILM), which has been extensively researched in the past. for dltetectlng appliances, and classification techniques yield
results.

NILM techniques try to infer state and power consumption of . L . . .

individual appliances by electrical signals measured from a single”ll Prior studies in this area [5-7] use empirical-analytic toc
sensing point (usually smart meter) on the power line. However, €y are not based on theoretically well-known machine lear
this is usually an overkill; in residential and commercial buildings, @PProaches. Our work is based on the foundations of dictic
the power consumed is not of much importance, but the state of€a/ning; a topic theoretically well understood and hig
the appliance is. For example, users have a fair idea of how mucrsuccessful for similar research areas like computer vision

power individual appliances like a heater or an AC consume. As biometrics. We believe dictionary learning is specifically suite:
this problem since it can be used to model the complex elec

signatures of the appliances. There are a plethora of pape
Permission to make digital or hard copies of all or part of this wor supervised dictionary learning, but these are all syntt
personal or classroom use is granted without fee provided that cop techniques, i.e. they learns a dictionary so that the features (
not made or distributed for profit or commercial advantage anc multiplied with the dictionary) can synthesize the data. The r
copies bear this notice and the full citation on the first page. Copy limitation of this approach is that it has a relatively slow execu

for components of this work owned by others than ACM mus ti . iterati timizati bl ds to b
honored. Abstracting with credit is permitted. To copy otherwist Ime since an Ierative optimization problem needs 10 be sc

republish, to post on servers or to redistribute to lists, requires while generating the features during operation.

specific permission and/or a fee. Request permissions . . .
Permisslons@acm.org. In this work a whole new framework for dictionary learninc
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such that it will generate features while analyzing the data. This is minHX " DZHZ 41 HZH

different from all prior dictionary learning methods; where the oz P 3)
data is synthesized / re-generated given the dictionary and the

features. One should not confuse the proposed method with J'H ) ] ]
analysis KSVD (to be discussed later). Aanalysis KSVD was Wheré'™is defined as the sum of absolute values and is
designed for solving denoising problems; it can generate featuresclosest convex envelope of the NP hirdorm. This formulatior
only in a roundabout fashion. Furthermore it is extremely slow; can be solved efficiently without resorting to SVD or other <
running the algorithm on a standard desktop for a simple datase€omputationally intensive steps. However, in every iteration
like MNIST takes about a week. The main operational benefit of columns of D need to be normalized. This is to prevent
our proposed analysis dictionary learning is that the operationdegenerate solution whelteis very large and is very small.
time is very fast. One does not need to solve a complex
optimization problem to generate the features from the test

samples. The features are generated, simply by multiplying thepeen jimited to synthesis dictionary learning. Analysis KSVD |
data with the learned dictionary. assumes that the training data, when analyzed by the le

To summarize, the contributions of this work are as follows: dictionary, will produce sparse coefficients. The analysis K¢
. o ] formulation solves the following:
1. A new signal for estimating the state is proposed based

First a discussion on the differences between synthesis
analysis dictionary learning is in order. The discussion so fa

on CM EMI emission. r[pianX _ oni such that HonHo <7
2. A new technique called analysis dictionary learning is * ’ )
proposed for data analysis. This formulation looks for a Oclean® representation of the

The paper is organized as follows. In the following section, an 2d léams a dictionary such that the clean representation,

overview of synthesis dictionary learning is presented. In Section 2nalyzed by this dictionary, is sparse. Such a formulation ap
3, the proposed technique B analysis dictionary learing isf€Strictive and seems only suitable for solving inverse prob
described in detail. In Section 4, the detail of the sensor used tdiké denoising and restoration. This does not produce
collect the CM EMI data from multiple appliances is given. features / coefficients that can be used for any classific

Experimental results are presented in Section 5. The conclusion?rOblems'

of this work and future directions are discussed in Section 6. It is not possib|e to review the p|eth0ra of different superv
. . synthesis dictionary learning techniques. Initial technic

2.Literature Review proposed nasve approaches, which learnt specific dictionarie

Early studies in dictionary learning wanted to learn a basis for each class [16, 17]. Later approaches incorporated discrimir
representation. This is the synthesis formulation, where thepenalties into the dictionary-learning framework. One ¢
training data X) is represented a¥=DZ whereD andZ are the technique is to include softmax discriminative cost function [
learned dictionary and the coefficients respectively. There were no[19]; other discriminative penalties include Fisher discrimina
constraints on the dictionary atoms or on the loading coefficients. criterion [20], linear predictive classification error [21] and hil
The method of optimal directions [8] was used to solve the |oss function [22].

learning problem by alternately updating the dictionary and the

coefficients via least squares. To the best of our knowledge dictionary learning based techn

have not been employed for energy analytics. There are
min||X ! DZH?: papers on tensor factorization [23, 24] that are in a diffe
102 (1) context.

J!HZ _ _ _3.Proposed Analysis Dictionary Learning
Here''* denotes the Frobenius norm. Today, this problem, (1) is |n traditional dictionary learning, a dictionary is learnt such th
known by the name of matrix factorization. can synthesize the data from the learned coefficients (Figure

For problems in sparse representation, the objective is to learn 1€T€ an alternative is proposed B an analysis dictionary, \
basis that can represent the samples in a sparse fashiad, i.e. 9€nerates sparse coefficients when operated on by the data (

needs to be sparse. The KSVD [9, 10] is the most well-known 1a).

teChnque for SO|V|ng this problem. Fundamenta”y, it solves a Mathematica”y the ana|ysis model is represented as:
problem of the form:

2 DX =2 (5)
min|X " DZ|_ suchthat |Z|, #!
102 ) where the symbols have their usual meaning.

JIH . . ] The learning problem can be formulated as follows:
Herd''% is defined as the number of non-zero elements. It is not

exactly a norm in the true sense of the term, but is a diversity min||DX " ZH2 +1 D], +15 )|z, st [l =1

measure. Solving thi-norm minimization problem is NP hard 0,z F 2 ! ! ©6)

[11]. KSVD employs the greedy (sub-optimal) orthogonal °

matching pursuit (OMP) [12] to solve thhenorm minimization The I>-norm onD is for regularization and th&-norm onZ

problem approximately. The major disadvantage of KSVD is that, promotes sparsity. The columns®f(d;) are normalized so as

it is a relatively slow technique owing to its requirement of prevent the trivial solutiold=0 andZ=0. The framework in (6

computing the SVD (singular value decomposition) in every can be solved easily using alternating minimization of D and :

iteration. There are alternate ways to formulate this problem such

that the solution is more efficient. These variants [13], [14] Dk;minHDX" Zk"lleleHDHz
| D

usually propose solving the following problem instead. (7a)
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Figure 3. lllustration of row-sparsity

The optimization problem that accounts for row-sparsity

Analysis: DX = Z | Synthesis: DZ = X formulated as:

@ ()

. " 2
! minox* 2|2 + 12Dl + 13 [k, st -1

Figure 1. Analysis vs. synthesis. I c (9)

Here & denotes iteration number. The first sub-problem (7a)The I2.1-norm is defined as the sum of thenorms of the rows.
is a least squares problem and has a closed form solution. In ordeThelz-norm on the row vectors promotes a dense solution, but
to enforce normalization of the columnsfall the elements are  sum B of B the B-norms promotes sparsity in the selection «
divided by thel>-norm of the column it belongs to. The second rows. Such mixed norms for row-sparsity are widely used
sub-problem has a closed form update in the form of soft signal processing [26, 27]. The step for dictionary update is
thresholding [25]. same as before (7a). But the update for the coefficients will

different. The problem can be expressed as,

|
Z, = signum(D, X) max(0,| D, X| # %) .
k : X min DX -2 4l
R

! 8)

The problem (6) is non-convex and hence is not guaranteed to (10)
reach any global minima. However each of the sub-problems (7) The individualZ:Oscan be solved separately by solving the
can be proven to be convex. The algorithm proposed abovenorm minimization problem. An efficient solution for (10) ha
converges and reaches a local solution. The empirical been derived in [28]; it is based on modified soft thresholdir

convergence plot is shown in Figure 2. The step is:
. Convergence with L1 thresholding ]
T ‘ ‘ Z, = signum(D, X,)max(0,|D X | #—=$)
—— — ! 2 (11)
§ N 4 ot )
AN # =diag(|z); | )|z} i!
] where 9(jzi |l . 21 denotegh row.

Objective fi
T
I

] Group-sparsity has been used in autoencoders [29] and restr
Botlzmann machines (RBM) [30] in the recent past to enfol
supervision.

fesrs 3.1.2Rank Deficiency
The formulation described here is slightly different from tt
sparsity based techniques. Here a dictionary is learnt such tha
3.1.Supervised Learning features from the same cIas; will be similar (linearly depende
The formulation proposed in the previous sub-section is not to each other, and he_nce i t_hey_are stacked as columns
. ; X : . matrix, the corresponding matrix will be rank deficient. It mea
fsufperws_ed. Nowhgrel |nh_the blearnl_ng ﬁlgorlthm IIS the ‘?"".‘SS that even though the input raw samples for each class may
Itn ohrrr)atlon requwet f ntr: |_s|_hsu fTS?Ct'On three S|mtpe stypervflslﬁn dissimilar (larger angle between samples), the features from
echniques are put forth. The Trst one IS a contnuation of e oo 0 ¢jass will be very similar to each other and will have a v
previous idea and is based on the concept of row-sparsity. small angle between them. Smaller angle means larger lir

3.1.1Row-Sparsity dependency, which in turn will lead to rank-deficiency of tf

Assume that the training data belongs to multiple classes and ardéaturé matrix. The scheme is illustrated in Figure 4. The in
represented byt where ¢ denotes the class. This work postulates r&ining samples are shown as black lines; at the output
that samples in the same class should lead to similar sparsiy€@Med dictionary generates linearly dependent features (sh
patterns, i.e. features would have a common support. See Figure 8Y different colors). This formulation can be expressed as,

b the dark circles denote non-zero values and the white ones 2
denote zeroes. Some arbitrary sparsity patterns for each class ar@in|DX " Z|Z +!4|D|, +! 2# |Z|. st. |dif|=1

shown, but according to the assumption the pattern is consistent Z c (12)
within the class. Thus the corresponding featu@Xx.£)Z: are '

supposed to be row-sparse within every class, i.e. they have non-

zero values only in a few rows.

Figure 2. Convergence plot for analysis dictionary learning




. 2 2
Classl  Class2 ClassC min||DX - Z +MZI, + N -WZzZ
| Z H HF 2H Hl 3HQ HF (15)

This can be compactly represented as:
n DX 1]
min|o &$J7<VWZ% +1of2,
! (16)

Note that, this is not a simple problem as (7b) or (9); the varia
. Z is coupled in the least squares term. Thus it does not ha\
; Input Training Data Output Features closed form update but can be solved using iterative s
' thresholding algorithm (ISTA) [37].

a
=
@D
2
=}
g,
[a

Figure 4. Scheme elucidating rank deficiency. Colors define
linear dependence with each other. ISTA:

| o mmHY " HTHF +1 HTHl
Here! denotes the nuclear norm of the matrix. It is the closest|i : Basic ISTA steps

convex surrogate of its rank; a small nuclear norm leads to a low
rank in most cases. Learning the dictionary from (12) is the samg B=T., - HT(Y" HT,.,)
as before (7a). Learning the coefficients is expressed as, Landweber Iteratioh:

|zl

= signum(B) max(0,| B # —

: " 2
rZT:IQ# DX " Z|c +! Soft Thresholdlng

(13) where! is the maximum eigen value BffH.

This is a nuclear norm minimization problem and can be solved

using singular value shrinkage [31]. The steps are: The final last task is to update the projecti¢nThis is a simple

least squares problem (17), having a closed form solution.

DX, =U"VT min|Q! wz|?
Z, =U Soft, ,(") VT ! 7)

\ . .. .
where Soft, ,(* ) = diag(" ) #max(0, diag(" ) $-2) 3.2.Advantage of Analysis Dictionary Learning
1 2 Once the analysis dictionary is learnt (supervised

. unsupervised), using it for feature extraction on a test sampli
3.1.3Label Consistency easy D one just needs to apply the learned dictionary on
In this formulation, the analysis dictionary is learnt in a similar sample. Ifxest is the test sample aridl is the learned dictionary,
fashion as the unsupervised setting; but an additional supervisiorthe feature corresponding to the sample is obtained by:
term is introduced that learns a linear map from the coefficients to et = =Dx,

the target class labels. The formulation is as follows: o ) (18)
A matrix vector multiplication has a complexity 6{mn)b thus
min HDX " ZHZ +1 HDH +1 HZH +1 HQ\NZH2 the feature generation during operation stage for the propo
A F 14) analysis formulations is very fast.

On the other hand, synthesis dictionary learning methc
Here Q consists of binary class labels, i.e., say there are three(irrespective of supervised and unsupervised) require solving
classes D the class label for class 1 willlh®, O], for class 2 it l1-norm minimization problem for feature generation from te
will be [0, 1, O]" and for class 3 it will bg0, 0, 1]J". W is a samples.
projection that maps the features to the class labels. The full th " Dz, H2+' HZ‘ H
scheme is shown in Figure 5. Such a type of formulation has beerl! ™ etllz 77 Tt (29)
used for synthesis dictionary learning in [32], [33], in RBM [34] This (19) needs to be solved iteratively. The computatior
and in autoencoders (single layer [35] and stacked [36]). complexity for every iteration i©(mr?). Approximately O(n®)
iterations are required. Therefore the overall complexity
r‘k‘:jeneratlng a feature from a test sampleDignr#9). Thus the
term in (14); the additional label consistency term discounts for computational complexity of synthesis dictionary learning
the trivial solution. significantly larger compared to analysis dictionary learning wh

a1 ommz  ome in operation (after training).

2 w e o 5o 3.3.Connection with Restricted Boltzmann
s 000 00 - 0 00 - O .
e MM R oy Machine
3 W 0w 0 e ¢ The architecture for a Restricted Boltzmann Machine (RBM)

shown in Figure6. It is a generic architecture where there is
| Input Training Data Features Targets input layer fully connected with a hidden / latent layer.

Figure 5. llustration for Label Consistency Formulation

The above problem can solve for the variabl2sZ(andW) using
alternate minimization. The update for the dictionary remains as
before (7a). The update for the featugpié:
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In RBM, the problem is to learn the connection weights

(mapping) from the input layer to the output/hidden layer as well €))

as the features at the hidden layer. In RBM the energy function

used to find out the weights and the features is the Boltzmann

function. Basically one tries to learn the network weight and the UPS Power Supply
output features such that the similarity between the projected data

(at the input) and the featuregDX) is maximized.

In the proposed method, the cost function is modifiedDb instead of

maximizing similarity; the Euclidean distance between the

projection of the dataDX) and the generated featureg) (s

minimized.

The basic architecture of the RBM is the same as the analysis

dictionary framework. They differ from each other in the cost

functions. The main disadvantage of RBM is that (ideally) it only |

works with binary inputs; it can be modified to work with inputs

that are real numbers between 0 and 1. But the proposed (b)
formulation does not have such constraints B it will work with any Figure 7. (a) shows the block view of EMI sensor and 7(b)

real or complex data. shows the actual test setup used for EMI measurements,
buffered to local storage using a wired interface. The AUT is
also connected to the same power line through an extension

4.Data Acquisition cord.

In this work, four different consumer appliances (appliance under
test B AUT) are considered D laptop charger, desktop computerfime domain measurements (CM EMI and DM EMI traces)
CFL and LCD monitor. While these are not the only commonly 1ms duration were made at a sampling frequency of 15.625)
occurring consumer appliances, they are chosen since they aré total of 1500 traces are measured for each instance of an
used both in residences and offices. Five instances of the samén each case, the background noise on the power lines b
appliance make and model are considered, and individualconnecting the AUT was also collected for comparison. 1
measurements are made for each instance. A sensor similar to thkackground component arises from the noise on the elec
one proposed in [7] is used for collecting both common-mode infrastructure such as power harmonics from the supply ¢
(CM) and differential mode (DM) EMI injected by an appliance transients from the high voltage loads like heating, ventilation
under test (AUT) on the power line. The experimental setup is air-conditioning, and emissions from other appliances on
shown in the figure below. The sensor directly interfaces with the transmission line. The measured data shows some intere
phase, neutral and earth power lines through an extension cordeatures. First, the strength of the background component or
through which the AUT is powered. The DM EMI is measured EMI measurements are higher than on CM EMI due to
from the differential across the phase and neutral lines. A highpresence of harmonics from the power supply on the DM |
pass filter is introduced to remove the 230V, 50Hz power signal measurements. Second, all the IT loads considered, were
from the measurement. The CM EMI is measured directly from quality appliances that were fitted with filters specifically targe
the earth currents. The measurements are stored in an interndbwards reducing their DM emissions. As a result, most of
buffer within the sensor and then uploaded to an external appliances showed very similar DM EMI signatures. The sig
computer for further processing through the wired interface. to-noise ratio (EMI to background noise) ratio was substant
higher for CM EMI measurements than DM EMI measuremen
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Figure 8. Left to Right: MNIST, CIFAR-10 and SVHN !

5 Experimental Evaluation variation in the image. The entire three channel image afte
' mean suppression was used for training and testing. A simila
51 Benchmarking processing in the form of SVHN database was tried; howeve

; . . . lost the clarity of features in the image by this process.
Since we are proposing a new representation-learning framework,

it is imperative that we compare with existing techniques on SVHN: We use similar preprocessing as used by Sermanet

benchmark problems. [44]. We contrast normalize the Y channel of the YUV image
the dataset and use only the Y channel for training
5.1.1Datasets classification. The Y channel is locally contrast normalized u

To test our formulation we used three datasets MNIST [40] a Gaussian ne|ghb0rh00d with a 7x7 window. This made
Street View House Numbers (SVHN) [41] and CIFAR-10 [42]. images look more like the MNIST database. The resultant irr
The MNIST dataset is a handwriting recognition dataset reside in an R1024 space. From figure 5 we see that the Y ct
developed by Y. LeCun et al. using the larger NIST dataset. It hascontains the shape information in a clear and precise mani
60,000 images of handwritten digits, which were used as tralnlngcompared to the U and V channels. Figure 5c shows
images and 10,000 images were used as test images. The SVHNreprocessed Y channels of the SVHN dataset. We only use

dataset is obtained from GOOgle Street View Images dataset. |tchanne| for tra|n|ng The same preprocessmg is app“ed to th
also involves recognition of digits, like the MNIST, however, it is  set before the classification step.

significantly harder to do so because of clustering of nearby digits

and variety of backgrounds. It is a real world problem of 5.1.3Results

recognizing the digits from natural scene images. It is a colouredWe have compared with Discriminative KSVD [32] and La
images database, with 73,257 images for training, and 26,032Consistent KSVD (LC-KSVD)[33] was used as the baseline
images for the test. There are also 531,131 simpler trainingthe various datasets. This method has shown to yield better 1
images; however, we do not use them. We use format 2 of thethan other dictionary learning techniques for classifica
dataset, which is like the MNIST dataset. Alex Krizhevsky et al. problems. After generating features by our proposed metho
compiled the CIFAR-10 dataset from the 80 million small images used k-nearest neighbor (KNN) classifier; sparse represen
dataset. This dataset contains 50,000 32x32 training images wittclassifier (SRC) [35] and artificial neural network (ANN). The
ten classes which are mutually exclusive. CIFAR-10 contains of neighbors used for nearest neighbor classification (u
images from various categories such as ship, frog, truck and morespecified otherwise) is 100. The number of hidden layers in n

This dataset contains 10,000 test images. nets was fixed to 100. The SRC is non-parametric.
5.1.2Pre-processing Now we describe the parameters for our proposed algorithrr
MNIST: No preprocessing was used on this dataset. the sparse (unsupervised) and row-sparse (superv

formulations, the number of atoms for using row sp
CIFAR: We used a similar preprocessing as was used by Zeiler eformulation is 200 with a regularization parameter of 0.5. Fol
al. in [43]. From each pixel, we subtracted the mean of the |mage|ow rank formulation, the number of atoms are 500;

for all images in the dataset. This suppressed the brightnessegularization parameter is 0.27. For the label consist



formulation, the number of atoms are 200 with a regularization than these well-known synthesis dictionary learning techni
parameter of 0.2; the parameter for learning the linear map isfor MNIST. SRC does not perform well with our propo:

unity.

Table 1. Unsupervised Analysis Deep Dictionary Learning

Method MNIST | SVHN CIFAR-10
Disc. KSVD [32] | 82.6 25.7 17.8
LC-KSVD2[33] |94.1 30.0 26.0
Proposed + KNN | 91.1 55.0 31.9
Proposed + SRC | 84.7 66.4 32.3
Proposed + ANN | 95.3 76.6 46.0

Table 2. Row-sparse Analysis Deep Dictionary Learning

Method MNIST | SVHN CIFAR-10
Disc. KSVD [32] | 82.6 25.7 17.8
LC-KSVD2[33] |94.1 30.0 26.0
Proposed + KNN | 91.1 55.6 314
Proposed + SRC | 84.6 66.9 33.8
Proposed + ANN | 95.8 74.5 42.3

Table 3. Low-rank Analysis Deep Dictionary Learning

Method MNIST | SVHN CIFAR-10
Disc. KSVD [32] | 82.6 25.7 17.8
LC-KSVD2[33] | 94.1 30.0 26.0
Proposed + KNN | 93.2 57.3 32.0
Proposed + SRC | 86.2 73.1 32.9
Proposed + ANN | 96.4 78.4 45.6
Table 4. Label-Consistent Analysis Deep Dictionary Learning

Method MNIST | SVHN CIFAR-10
Disc. KSVD [32] | 82.6 25.7 17.8
LC-KSVD2[33] | 94.1 30 26
Proposed + KNN | 93.2 59.2 32.6
Proposed + SRC | 87.7 76.7 32.7
Proposed + ANN | 96.3 78.6 46.2

framework, but KNN and ANN do. With KNN we always perfo
better than [32] and slightly worse then [33]; with the ne
network, we always yield the best results.

MNIST is the easiest dataset; for more complex ones
CIFAR-10 and SVHN we always perform significantly better.

The results are not at par with those of deep learning techr
like convolutional neural network, deep belief network or stac
denoising autoencoder. However, it would not be fair to com
our new yet simple technique to these complex tools. We
proposing a new framework for analysis dictionary learning,
we have compared it against well-known synthesis dictio
learning techniques.

5.2.Appliance Classification

Experiments were carried out on the toughest possible sce
The training set consisted of samples from only one of the
instances for each appliance while the remaining four instanc
each appliance constituted the test set. This is also the
practical scenario. In the office environment, it is not possib
train on every possible instance of the same appliance t
should be able to identify multiple instances of the same appl
after being trained on a single instance.

The proposed techniques were compared with [6] B which

specifically developed for appliance classification problems. [

learning techniques like stacked autoencoders and deep

networks were also used. The results from these were as gt

random labelling B basically, all the samples were getting me
1

num of appliances
to one class, hence the accuracy was always ap .

The results showed no difference with the type of data; raw
or Fourier magnitudes or cepstrum features. Even th
thorough experiments were carried out on these, results for
learning are not reported in this study, as they yield poor resu

Both CM and DM EMI data were collected. Analysis on the
EMI yields poor results (same as random label assignmen
matter what technique is used D this supports the prior disct
regarding the disadvantages of DM EMI for appliance dete:
and classification. Since this signal is filtered by most of
todayOs sophisticated appliances, there is no distingu
information left. Since DM EMI results are poor, they are
presented here. The results shown here are for CM EMI.

Traditional feature selection methods like Principal Compo
Analysis, Linear Discriminant Analysis and their kerneli
versions also failed to produce any improvements. Finally, ol
the most recent information theoretic feature selection techn
[38] based on conditional likelihood maximization was us
These features were input to the neural network (NN) and su
vector machine (SVM) for classification.

The proposed techniques, described in the previous sections
implemented on the raw time-domain data, but it yielded

classification results. This is because the time domain data
synchronized, i.e. the samples are shifted versions of each
Operating on the Fourier frequency magnitudes yields some
superior results. However, the best results are obtainet
cepstrum features. The motivation for using cepstrum fea

Discriminative KSVD and LC-KSVD are not dependent on the follow from [39] B where it was used for feature extraction o
external classifier; hence their results remain the same. We haveenergy disaggregation problem. Some representative cep
repeated them in different tables for the ease of comparison. Wdeatures for different appliances are shown in Fig. 8. This fi
see that our proposed method is at par and even slightly betteshows that the features look similar for different instances o

same appliance but are different across different appliances



last category, background noise, is the data measured when there
are no appliances connected to the power lifieg. dictionary

Table 8. Confusion Matrix — Label-Consistent ADL

learning techniques were applied to the cepstrum features.

Confusion Matrix: LC ADL

The features generated by the dictionary learning process are used
to train a neural network for classification. For the test data, the

features are simply generated by multiplying it with the learned

dictionary. These features are input to the learned neural network

CFL CPU LCD LC Noise
CFL 52.8% 5.1% 0.0% 0.9% 0.2%
CPU 4.7% 71.0% 6.8% 0.9% 0.0%
LCD 4.2% 18.6% 79.7% 29.5% 0.0%
LC 1.3% 5.3% 13.0% 60.3% 0.0%
Noise 37.0% 0.0% 0.5% 8.4% 99.8%

for classification. The overall classification accuracy across !
various methods is shown in Table 13.

Table 9. Confusion Matrix [5]

However, the overall classification accuracy does not yield

Confusion Matrix: GMM + kNN (ElectriSense)

insight. Therefore the confusion matrices are shown for all the

appliances in following Tables 5 through 12. The diagonal values

demonstrate the percentage of correct classification. The off-

diagonal elements show the proportion of a device being

misclassified as some other device.

CFL CPU LCD LC Noise
CFL 0.0% 75.0% 0.0% 25.0% 0.0%
CPU 0.0% 50.0% 0.0% 50.0% 0.0%
LCD 0.0% 25.0% 0.0% 75.0% 0.0%
LC 0.0% 25.0% 0.0% 75.0% 0.0%
Noise 0.0% 25.0% 0.0% 50.0% 25.0%

|

CFL = Lco Laptop Charger Background Noise
s 0s 0s

- Table 10. Confusion Matrix — CLM [38] + Nearest Neighbor

) r~-«h~~-J B UE N o o Confusion Matrix: CLM + NN
CFL CcPU LCD LC Noise
. . - . . CFL 50.59%|  38.4%|  20.4%|  31.2%|  20.0%
T i e TR TR — A R 5% e oot
0 o5 0 0 LCD 17.9% 0.1%]| _ 79.4% 0.3% 0.0%
3 LC 13.0%| _ 10.1% 0.0%] _ 68.0% 0.0%
R — b ot . Noise 9.2% 0.0% 0.0% 0.0%| _ 80.0%
g |

100 200 00 100 200 300 100 200 300 100 200 300 100 200 300

Table 11. CLM [38] + Support Vector Machine

Confusion Matrix: CLM + SVM

Sy  NURYY R . opn op

05 05 -05 05 05

100 200 300 100 200 300 100 200 300 200 300 100 200 300

CFL CPU LCD LC Noise
CFL 29.3% 25.4% 1.1% 15.7% 0.1%
CPU 9.4% 49.4% 6.5% 6.7% 6.5%
LCD 27.9% 5.2% 84.2% 8.2% 5.0%
LC 23.0% 20.0% 8.2% 69.4% 8.4%
Noise 10.4% 0.0% 0.0% 0.0% 80.0%

Figure 9. Cepstrum features — horizontal axis — frequency in !
kHz and vertical axis — Volt

Confusion Matrix: [6]
. . . L auU LD IC Noise
Table 5. Confusion Matrix - Unsupervised ADL = T 150013309 =507 =%
U O%6|  64.20% 060%|  11.90% 73
Confusion Matrix: Unsupenised ADL LD 5.60% 8.90% 67.10% 110% 4.30%
CEL CPU LCD c Noise C Oh|  11.10% O%h|  69.40% 370%
CFL 65.6% 0.8% 0.4% 3.1% 5.8% Noise 4.50% 10.90% 19% 12% 86.80%
CPU 1.7% 88.3% 5.2% 0.1% 0.0%
LCD 3.3% 9.4% 79.9% 26.2% 0.0% ! .
LC 3.7% 1.6% 14.5% 68.4% 0.0% * Please note that the results from Table 12 cannot be dire
Noise 25.7% 0.0% 0.0% 2:2%|  94.2% compared with [6]. This is because of the random splits use

Table 6. Confusion Matrix — Row-sparse ADL

Table 12. Confusion Matrix [6]

[6] are different from ours.

Table 13. Overall Classification Results

Confusion Matrix: Row-sparse ADL

CFL CPU LCD LC Noise [5] | [6] CLM +|CLM +|ADL |R S|L R|L C
CFL 69.2% 1.1% 0.1% 1.0% 4.7% NN SVM ADL | ADL | ADL
CPU 1.7% 88.1% 3.5% 0.0% 0.0%
LCD 2.7% 8.7% 79.9% 25.1% 0.0%
c 34% >15% 16.4% o 0.0% 30 | 75.5 65.87 62.46 79.29 | 81.12 | 80.85 | 80.20
Noise 22.9% 0.0% 0.0% 0.9% 95.3%

1 *RS D row-sparse; LR D low-rank; LC b label-consistent

Table 7. Confusion Matrix — Low-rank ADL 6.Conclusion

Confusion Matrix: Low-rank ADL

CFL CPU LCD LC Noise
CFL 72.0% 0.9% 0.6% 2.1% 5.1%
CPU 0.4% 87.2% 2.3% 0.1% 0.0%
LCD 4.1% 10.2% 79.9% 24.7% 0.0%
LC 2.1% 1.8% 17.2% 70.3% 0.0%
Noise 21.5% 0.0% 0.0% 2.8% 94.9%

In this work, the problem of identifying consumer appliance
used in most office environments, by their EMI signatures w
addressed. This problem has gained interest since the publici
of ElectriSense [5] in 2010. The main difference between [5] €
[6] is that here the common mode (CM) EMI signature is acquil
whereas the previous one used differential mode (DM) E
signature. The shortcomings of DM EMI are discussed B
power signal and its harmonics interfere with the DM EMI; hen
analyses based on such signatures are not reliable. CM



measurements are unaffected by the power signal and hence th@.
CM EMI carries more discerning information about appliances.

Prior techniques [5, 6] for appliance identification based on EMI
signature were largely heuristic. In this work a new technique for

feature extraction is developed P analysis dictionary learning. ThelO.

basic formulation is unsupervised; three supervised variations are
also proposed. The proposed formulation generates features,
which are further employed to train a neural network for

classification. The results show that the proposed method yields a11

significant improvement over [5, 6]

There are two benefits of analysis dictionary learning. It has a12.

faster operation compared to prior synthesis dictionary learning.
This is because, in synthesis dictionary learning, one needs to
solve a convex optimization problem iteratively B this is time-

consuming. Analysis dictionary learning just requires a matrix-

vector multiplication. Therefore, the feature extraction time during

testing is drastically reduced. This makes the technique suitable
for real-time processing.

The other benefit of this approach is for the future. We would like 14,

to address the scenario where multiple appliances are running
simultaneously. This is the disaggregation problem. It is possible
to extend the dictionary learning based approach to solve this b,
synthesis dictionary learning has already achieved this for smart-
meter data. Also, there are several applications based on energy
disaggregation / non-intrusive load monitoring; currently they are

based on power meter readings. We would like to explore if such

problems can be solved in a better fashion using CM EMI 16.

signatures and analysis dictionary learning.

7.ACKNOWLEDGMENTS

Authors acknowledge the support provided by ITRA project, 17

funded by DEITy, Government of India, under grant with Ref. No.
ITRA/15(57)/Mobile/HumanSense/01.

8.REFERENCES

1. Perez-Lombard L., Ortiz J., and Pout, C. 2008. A review on
buildings energy consumption informatidenergy and
buildings 40, 394-398.

2. Hart G.W. 1992. Nonintrusive appliance load monitoring.
Proceedings of the IEEBO, 1870-1891.

3. Koutitas, G. C., and Tassiulas L. 2016. Low Cost
Disaggregation of Smart Meter Sensor DHEEE Sensors
Journal 16 (6), 1665-1673.

4. Xu, Y., and Milanovi, J. V. 2015. Artificial-Intelligence-
Based Methodology for Load Disaggregation at Bulk Supply
Point.IEEE Transactions on Power Syster38 (2),

795-803.

5. Gupta, S., Reynolds, M. S., and Patel, S.N. 2010.
ElectriSense: single-point sensing using EMI for electrical
event detection and classification in the hofrth ACM
international conference on Ubiquitous computing

6. Gulati, M., Ram, S. S., Majumdar, A., and Singh, A. 2016.
Single Point Conducted EMI Sensor With Intelligent
Inference for Detecting IT ApplianceleEE Transactions on
Smart Grid (accepted)

7. Kulkarni, A. S., Harnett, C. K., and Welch, K. C. 2015. EMF
Signature for Appliance ClassificatioftEEE Sensors
Journal 15 (6), 3573-3581.

8. Engan, K., Aase, S., and Hakon-Husoy, J. 1999. Method of
optimal directions for frame desigEEE International
Conference on Acoustics, Speech, and Signal Processing

18.

19.

24.

Aharon, M., Elad, M., and Bruckstein, A. 2006. K-SVD: A
Algorithm for Designing Overcomplete Dictionaries for
Sparse RepresentatidBEE Transactions on Signal
Processing54 (11), 4311-4322.

Elad, M., and Aharon, M. 2006. K-SVD: Image Denoisin¢
Via Sparse and Redundant Representations Over Learnt
Dictionaries|EEE Transactions on Image Processia§
(12), 3736-3745.

Natarajan, B. K. 1995. Sparse approximate solutions to |
systemsSIAM Journal on computin@4, 227-234, 1995.

Pati, Y., Rezaiifar, R., and Krishnaprasad, P. 1993.
Orthogonal Matching Pursuit : recursive function
approximation with application to wavelet decomposition
Asilomar Conference on Signals, Systems and Computir

13. Yaghoobi, M., Blumensath, T., and Davies, M. E. 2009.

Dictionary Learning for Sparse Approximations With the
Majorization MethodIEEE Transacyions on Signal
Processing7 (6), 2178-2191.

Rakotomamonijy, A. 2013. Applying alternating direction
method of multipliers for constrained dictionary learning.
Neurocomputingl106 (15), 126-136.

15. Rubinstein, R., Peleg, T., Elad, M. 2013. Analysis K-SVD

Dictionary-Learning Algorithm for the Analysis Sparse
Model. IEEE Transactions on Signal Processigg (3), pp.
661-677.

Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zissermar
2008. Discriminative learned dictionaries for local image
analysislEEE International Conference on Computer Visi
and Pattern Recognition

Zhang, W., Surve, A., Fern, X., Dietterich, T. 2009. Learn
non-redundant codebooks for classifying complex object
International Conference on Machine Learning

Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.
2009. Supervised dictionary learnimdeural Information
Processing Systems

Mairal, J., Leordeanu, M., Bach, F., Hebert, M., and Ponc
2008. Discriminative sparse image models for class-spec
edge detection and image interpretatibaropean
Conference on Computer Vision

Huang, K., Aviyente, S. 2007. Sparse representation for
signal classification 200Neural Information Processing
Systems

. Pham, D., and Venkatesh, S. 2008. Joint learning and

dictionary construction for pattern recognitidBEE
International Conference on Computer Vision and Patter
Recognition

. Yang, J., Yu, K., and Huang, T. 2010. Supervised transla

invariant sparse codingnternational Conference on
Computer Vision and Pattern Recognition

. Figueiredo, M., Ribeiro, B., and de Almeida, A. 2014.

Electrical Signal Source Separation Via Nonnegative Ter
Factorization Using On Site Measurements in a Smart H
IEEE Transactions on Instrumentation and Measuren&shi
(2), 364-373.

Figueiredo, M., Ribeiro, B., and de Almeida, A. 2015.
Analysis of trends in seasonal electrical energy consumg
via non-negative tensor factorizatidteurocomputing170,
318-327.

Donoho, D. L. 1995. De-noising by soft-thresholdiligEE
Transaction on Information Theargl (3), 613-627.



26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

Van den Berg, E., and Friedlander, M. P. 2010 .Theoretical
and empirical results for recovery from multiple
measurement$EEE Transactions on Information TheoB6
(5), 2516-2527.

Cotter, S. F,, Rao, B. D., Engan, K., and Kreutz-Delgado, K.

2005. Sparse solutions to linear inverse problems with
multiple measurement vectotEEE Transactions on Signal
Processing53 (7), 2477-2488.

Majumdar, A., and Ward, R. K. 2012. Synthesis and Analysis

Prior Algorithms for Joint-Sparse RecoveiyEE
International Conference on Acoustics, Speech, and Signal
Processing

Majumdar, A., Vatsa, M., and Singh, R. 2016. Face

Recognition via Class Sparsity based Supervised Encoding.

IEEE Transactions on Pattern Analysis and Machine
Intelligence(Epub).

Sankaran, A., Sharma, G., Singh, R., Vatsa, M., and
Majumdar, A. 2016. Class Sparsity Signature based
Restricted Boltzmann MachingBattern Recognition
(Epub).

Majumdar, A., and Ward, R. K. 2011. Some Empirical
Advances in Matrix Completiorsignal Processing1 (5),
1334-1338.

Zhang, Q., and Li, B. 2010. Discriminative K-SVD for
dictionary learning in face recognitioEEE International
Conference on Computer Vision and Pattern Recognition

Jiang, Z., Lin, Z., and Davis, L. S. 2013. Learning A
Discriminative Dictionary for Sparse Coding via Label
Consistent K-SVDIEEE Trans. on Pattern Analysis and
Machine Intelligence35, 2651-2664.

Larochelle, H., Bengio, Y. 2008. Classification using
Discriminative Restricted Boltzmann Machines.
International Conference on Machine Learning

Gogna, A, and Majumdar, A. 2016. Semi Supervised
Autoencoderinternational Conference on Neural
Information Processing

39.

40.

41.

42.

43.

44,

. Majumdar, A., Gogna, A., Ward, R. K. 2016. Semi-

supervised Stacked Label Consistent Autoencoder for
Reconstruction and Analysis of Biomedical Signit&E
Transactions on Biomedical Engineerir{gccepted).

. Daubechies, I., Defrise, M., and De Mol, C. 2014. An

iterative Thresholding algorithm for linear inverse problen
with a sparsity constrainEommunications on Pure and
Applied Mathematics7, 1413D1457.

. Brown, G., Pocock, A., Zhao, M. J., Lujtn, M. 2012.

Conditional Likelihood Maximisation: A Unifying
Framework for Information Theoretic Feature Selection.
Journal of Machine Learning Researd8, 27"66.

Kong, S., Kim, Y., Joo, S. K., and Kim, J. H. 2015. Home
appliance load disaggregation using cepstrum-smoothing
based methodEEE Transactions on Consumer Electronic
61 (1), 24-30.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. 1998. Gradie
based learning applied to document recognitfRimceedings
of the IEEE 86(11), 2278-2324.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng
Y. 2011. Reading Digits in Natural Images with
Unsupervised Feature LearnifglPS Workshop on Deep
Learning and Unsupervised Feature Learning

Krizhevsky, A., and Hinton, G. 2009. Learning Multiple
Layers of Features from Tiny Images. Technical Report,
University of Toronto.

Zeiler, M. D., and Fergus, R. 2013. Stochastic pooling for
regularization of deep convolutional neural netwogkXiv
preprint arXiv:1301.3557

Sermanet, P., Chintala, S., & LeCun, Y. 2012. Convolutiol
neural networks applied to house numbers digit
classificationInternational Conference on Pattern
Recognition



