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ABSTRACT 
The objective of this paper is to estimate if an electrical appliance 
is ÔONÕ based on their common mode electromagnetic (CM EMI) 
emissions. The assumption being that, a user by knowing the state 
of the appliance can make an informed decision whether to keep it 
running or switch it off to save power. Here, state estimation of a 
single appliance is formulated as a classification problem. A new 
technique called analysis dictionary learning is proposed to 
generate features from CM EMI. The proposed method 
outperforms feature extraction based on deep learning techniques 
as well as a state-of-the-art information theoretic feature 
extraction technique based on Conditional Likelihood 
Maximization.   

CCS Concepts 
¥ Computing methodologies  ¥ Machine learning  ¥ Learning 
paradigms  ¥ Supervised Learning ¥ Applied computing  ¥ 
Physical sciences and engineering ¥ Electronics.  

Keywords 
Non-intrusive load monitoring; supervised learning; dictionary 
learning. 

1.INTRODUCTION 
Residential and commercial buildings account for 40% of the 
global energy consumption [1]. With the rapid growth in 
infrastructure, there is an urgent need to reduce energy 
consumption. The twin goals for long-term energy sustainability 
can be identified as (1) use of energy efficient appliances to 
reduce energy consumption (2) reducing energy consumption 
through appliance identification and optimizing appliance 
operations in non-working hours. In this work, we are focusing on 
the latter goal, where the objective is to accurately detect and 
classify appliances that are operational on a power line. Broadly, 
this work falls under the area of Non-intrusive load monitoring 
(NILM), which has been extensively researched in the past.  

NILM techniques try to infer state and power consumption of 
individual appliances by electrical signals measured from a single 
sensing point (usually smart meter) on the power line. However, 
this is usually an overkill; in residential and commercial buildings, 
the power consumed is not of much importance, but the state of 
the appliance is. For example, users have a fair idea of how much 
power individual appliances like a heater or an AC consume. As 

long as the users have the information on which appliances are 
operational, they can take an informed decision whether to turn it 
off or not. Also, NILM techniques claim to be capable of 
disaggregating power consumption of several appliances using 
total power reading of the smart meter acquired at regular 
intervals of time. A few household appliances, such as electric 
toasters and irons, are simple on/off loads that show a sharp 
increase in the power consumption when switched on. These 
patterns can be identified with data gathered from smart meters 
[3]. However, most of the residential and commercial appliances 
are not simple on/off loads. They exhibit multi-state (refrigerator, 
AC, washer, etc.) or continuously time varying (CPU, printers, 
etc.) power consumption behavior [4]. Detecting the operation of 
these appliances has challenged researchers in the past few years. 
Multi-state loads can be modeled by stochastic finite state 
machines (Factorial Hidden Markov Model or Product of 
Experts), but the continuously varying loads are hard to model by 
such classical techniques. 

In recent years, an alternate technique to smart meter sensing has 
emerged as a viable method for detecting time-varying power 
patterns in appl iances. The method uti l izes unique 
electromagnetic emissions, generated by the switched mode 
power supplies within the appliances, to infer appliance usage on 
the power lines [5-7]. The electromagnetic emissions are of two 
types: the differential signal between the phase and neutral power 
lines; and the common mode signal between these lines and the 
earth. The common-mode signal was demonstrated as a far more 
robust feature vector for classification in comparison to the 
differential signal in [6]. This is because of the primary power 
signal (110V/230V) and its harmonics, which interfere heavily 
with the differential signal [6], are not present in the common-
mode signal measurements. Also, most appliances, today, are 
required to be fitted with high-quality differential mode filters that 
regulate their emissions. Therefore, Differential Mode 
Electromagnetic (DM EMI) emissions form an unreliable feature 
for detecting appliances, and classification techniques yield poor 
results. 

All prior studies in this area [5-7] use empirical-analytic tools; 
they are not based on theoretically well-known machine learning 
approaches. Our work is based on the foundations of dictionary 
learning; a topic theoretically well understood and highly 
successful for similar research areas like computer vision and 
biometrics. We believe dictionary learning is specifically suited to 
this problem since it can be used to model the complex electrical 
signatures of the appliances. There are a plethora of papers on 
supervised dictionary learning, but these are all synthesis 
techniques, i.e. they learns a dictionary so that the features (when 
multiplied with the dictionary) can synthesize the data. The main 
limitation of this approach is that it has a relatively slow execution 
time since an iterative optimization problem needs to be solved 
while generating the features during operation. 

In this work a whole new framework for dictionary learning Ð 
analysis dictionary learning is developed. The dictionary is learnt 
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such that it will generate features while analyzing the data. This is 
different from all prior dictionary learning methods; where the 
data is synthesized / re-generated given the dictionary and the 
features. One should not confuse the proposed method with 
analysis KSVD (to be discussed later). Aanalysis KSVD was 
designed for solving denoising problems; it can generate features 
only in a roundabout fashion. Furthermore it is extremely slow; 
running the algorithm on a standard desktop for a simple dataset 
like MNIST takes about a week. The main operational benefit of 
our proposed analysis dictionary learning is that the operation 
time is very fast. One does not need to solve a complex 
optimization problem to generate the features from the test 
samples. The features are generated, simply by multiplying the 
data with the learned dictionary.  

To summarize, the contributions of this work are as follows: 

1. A new signal for estimating the state is proposed based 
on CM EMI emission. 

2. A new technique called analysis dictionary learning is 
proposed for data analysis. 

The paper is organized as follows. In the following section, an 
overview of synthesis dictionary learning is presented. In Section 
3, the proposed technique Ð analysis dictionary learning is 
described in detail. In Section 4, the detail of the sensor used to 
collect the CM EMI data from multiple appliances is given. 
Experimental results are presented in Section 5. The conclusions 
of this work and future directions are discussed in Section 6. 

2.Literature Review 
Early studies in dictionary learning wanted to learn a basis for 
representation. This is the synthesis formulation, where the 
training data (X) is represented as: X=DZ where D and Z are the 
learned dictionary and the coefficients respectively. There were no 
constraints on the dictionary atoms or on the loading coefficients. 
The method of optimal directions [8] was used to solve the 
learning problem by alternately updating the dictionary and the 
coefficients via least squares. 

!      (1) 

Here! denotes the Frobenius norm. Today, this problem, (1) is 
known by the name of matrix factorization. 

For problems in sparse representation, the objective is to learn a 
basis that can represent the samples in a sparse fashion, i.e. Z 
needs to be sparse. The KSVD [9, 10] is the most well-known 
technique for solving this problem. Fundamentally, it solves a 
problem of the form: 

!    (2) 

Here! is defined as the number of non-zero elements. It is not 
exactly a norm in the true sense of the term, but is a diversity 
measure. Solving the l0-norm minimization problem is NP hard 
[11]. KSVD employs the greedy (sub-optimal) orthogonal 
matching pursuit (OMP) [12] to solve the l0-norm minimization 
problem approximately. The major disadvantage of KSVD is that, 
it is a relatively slow technique owing to its requirement of 
computing the SVD (singular value decomposition) in every 
iteration. There are alternate ways to formulate this problem such 
that the solution is more efficient. These variants [13], [14] 
usually propose solving the following problem instead. 

!     (3)  

where! is defined as the sum of absolute values and is the 
closest convex envelope of the NP hard l0-norm. This formulation 
can be solved efficiently without resorting to SVD or other such 
computationally intensive steps. However, in every iteration, the 
columns of D need to be normalized. This is to prevent the 
degenerate solution where D is very large and Z is very small.  

First a discussion on the differences between synthesis and 
analysis dictionary learning is in order. The discussion so far has 
been limited to synthesis dictionary learning. Analysis KSVD [15] 
assumes that the training data, when analyzed by the learned 
dictionary, will produce sparse coefficients. The analysis KSVD 
formulation solves the following: 

!    (4) 

This formulation looks for a ÔcleanÕ representation of the signal 
and learns a dictionary such that the clean representation, when 
analyzed by this dictionary, is sparse. Such a formulation appears 
restrictive and seems only suitable for solving inverse problems 
like denoising and restoration. This does not produce any 
features / coefficients that can be used for any classification 
problems.  

It is not possible to review the plethora of different supervised 
synthesis dictionary learning techniques. Initial techniques 
proposed na•ve approaches, which learnt specific dictionaries for 
each class [16, 17]. Later approaches incorporated discriminative 
penalties into the dictionary-learning framework. One such 
technique is to include softmax discriminative cost function [18], 
[19]; other discriminative penalties include Fisher discrimination 
criterion [20], linear predictive classification error [21] and hinge 
loss function [22]. 

To the best of our knowledge dictionary learning based techniques 
have not been employed for energy analytics. There are two 
papers on tensor factorization [23, 24] that are in a different 
context.   

3.Proposed Analysis Dictionary Learning 
In traditional dictionary learning, a dictionary is learnt such that it 
can synthesize the data from the learned coefficients (Figure 1b). 
Here an alternative is proposed Ð an analysis dictionary, which 
generates sparse coefficients when operated on by the data (Figure 
1a). 

Mathematically the analysis model is represented as: 

!       (5) 

where the symbols have their usual meaning. 

The learning problem can be formulated as follows:  

!   (6) 

The l2-norm on D is for regularization and the l1-norm on Z 
promotes sparsity. The columns of D (di) are normalized so as to 
prevent the trivial solution D=0 and Z=0. The framework in (6) 
can be solved easily using alternating minimization of D and Z. 

!    (7a) 
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!    (7b) 

!  

Figure 1. Analysis vs. synthesis. 

Here ÔkÕ denotes iteration number. The first sub-problem (7a) 
is a least squares problem and has a closed form solution. In order 
to enforce normalization of the columns of D, all the elements are 
divided by the l2-norm of the column it belongs to. The second 
sub-problem has a closed form update in the form of soft 
thresholding [25].  

!   (8) 

The problem (6) is non-convex and hence is not guaranteed to 
reach any global minima. However each of the sub-problems (7) 
can be proven to be convex. The algorithm proposed above 
converges and reaches a local solution. The empirical 
convergence plot is shown in Figure 2. 

!  

Figure 2. Convergence plot for analysis dictionary learning 

3.1.Supervised Learning 
The formulation proposed in the previous sub-section is not 
supervised. Nowhere in the learning algorithm is the class 
information required. In this sub-section three simple supervision 
techniques are put forth. The first one is a continuation of the 
previous idea and is based on the concept of row-sparsity. 

3.1.1.Row-Sparsity 
Assume that the training data belongs to multiple classes and are 
represented by Xc where c denotes the class. This work postulates 
that samples in the same class should lead to similar sparsity 
patterns, i.e. features would have a common support. See Figure 3 
Ð the dark circles denote non-zero values and the white ones 
denote zeroes. Some arbitrary sparsity patterns for each class are 
shown, but according to the assumption the pattern is consistent 
within the class. Thus the corresponding features (DXc=)Zc are 
supposed to be row-sparse within every class, i.e. they have non-
zero values only in a few rows. 

!  

Figure 3. Illustration of row-sparsity 

The optimization problem that accounts for row-sparsity is 
formulated as: 

!  (9) 

The l2,1-norm is defined as the sum of the l2-norms of the rows. 
The l2-norm on the row vectors promotes a dense solution, but the 
sum Ð of Ð the Ð l2-norms promotes sparsity in the selection of 
rows. Such mixed norms for row-sparsity are widely used in 
signal processing [26, 27]. The step for dictionary update is the 
same as before (7a). But the update for the coefficients will be 
different. The problem can be expressed as, 

!    (10) 

The individual ZcÕs can be solved separately by solving the l2,1-
norm minimization problem. An efficient solution for (10) has 
been derived in [28]; it is based on modified soft thresholding. 
The step is: 

!   (11) 

where ; denotes jth row. 

Group-sparsity has been used in autoencoders [29] and restricted 
Botlzmann machines (RBM) [30] in the recent past to enforce 
supervision.  

3.1.2.Rank Deficiency 
The formulation described here is slightly different from the 
sparsity based techniques. Here a dictionary is learnt such that the 
features from the same class will be similar (linearly dependent) 
to each other, and hence if they are stacked as columns of a 
matrix, the corresponding matrix will be rank deficient. It means 
that even though the input raw samples for each class may be 
dissimilar (larger angle between samples), the features from the 
same class will be very similar to each other and will have a very 
small angle between them. Smaller angle means larger linear 
dependency, which in turn will lead to rank-deficiency of the 
feature matrix. The scheme is illustrated in Figure 4. The input 
training samples are shown as black lines; at the output the 
learned dictionary generates linearly dependent features (shown 
by different colors). This formulation can be expressed as, 

!   (12) 
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!  

Figure 4. Scheme elucidating rank deficiency. Colors define 
linear dependence with each other. 

Here ! denotes the nuclear norm of the matrix. It is the closest 
convex surrogate of its rank; a small nuclear norm leads to a low-
rank in most cases. Learning the dictionary from (12) is the same 
as before (7a). Learning the coefficients is expressed as, 

!    (13) 

This is a nuclear norm minimization problem and can be solved 
using singular value shrinkage [31]. The steps are: 

!  

3.1.3.Label Consistency 
In this formulation, the analysis dictionary is learnt in a similar 
fashion as the unsupervised setting; but an additional supervision 
term is introduced that learns a linear map from the coefficients to 
the target class labels. The formulation is as follows: 

!  (14) 

Here Q consists of binary class labels, i.e., say there are three 
classes Ð the class label for class 1 will be [1, 0, 0]T, for class 2 it 
will be [0, 1, 0]T and for class 3 it will be [0, 0, 1]T. W is a 
projection that maps the features to the class labels. The full 
scheme is shown in Figure 5. Such a type of formulation has been 
used for synthesis dictionary learning in [32], [33], in RBM [34] 
and in autoencoders (single layer [35] and stacked [36]). 

Note that one does not need to enforce the column normalization 
term in (14); the additional label consistency term discounts for 
the trivial solution. 

!  

Figure 5. Illustration for Label Consistency Formulation 

The above problem can solve for the variables (D, Z and W) using 
alternate minimization. The update for the dictionary remains as 
before (7a). The update for the feature (Z) is: 

!   (15) 
This can be compactly represented as: 

!    (16) 
Note that, this is not a simple problem as (7b) or (9); the variable 
Z is coupled in the least squares term. Thus it does not have a 
closed form update but can be solved using iterative soft 
thresholding algorithm (ISTA) [37].  

ISTA: 

! : Basic ISTA steps 

Landweber Iteration:!   

Soft Thresholding:!  
where !  is the maximum eigen value of HTH. 

The final last task is to update the projection W. This is a simple 
least squares problem (17), having a closed form solution. 

!      (17) 

3.2.Advantage of Analysis Dictionary Learning 
Once the analysis dictionary is learnt (supervised or 
unsupervised), using it for feature extraction on a test sample is 
easy Ð one just needs to apply the learned dictionary on the 
sample. If xtest is the test sample and D is the learned dictionary, 
the feature corresponding to the sample is obtained by: 

!      (18) 
A matrix vector multiplication has a complexity of O(mn) Ð thus 
the feature generation during operation stage for the proposed 
analysis formulations is very fast.  
On the other hand, synthesis dictionary learning methods 
(irrespective of supervised and unsupervised) require solving an 
l1-norm minimization problem for feature generation from test 
samples. 

!     (19) 
This (19) needs to be solved iteratively. The computational 
complexity for every iteration is O(mn2). Approximately O(n.5) 
iterations are required. Therefore the overall complexity of 
generating a feature from a test sample is O(mn2.5). Thus the 
computational complexity of synthesis dictionary learning is 
significantly larger compared to analysis dictionary learning when 
in operation (after training).  

3.3.Connection with Restricted Boltzmann 
Machine 
The architecture for a Restricted Boltzmann Machine (RBM) is 
shown in Figure6. It is a generic architecture where there is an 
input layer fully connected with a hidden / latent layer. 
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!  
Figure 5. Restricted Boltzmann Machine  

In RBM, the problem is to learn the connection weights 
(mapping) from the input layer to the output/hidden layer as well 
as the features at the hidden layer. In RBM the energy function 
used to find out the weights and the features is the Boltzmann 
function. Basically one tries to learn the network weight and the 
output features such that the similarity between the projected data 
(at the input) and the features (ZTDX) is maximized. 
In the proposed method, the cost function is modifiedÐ instead of 
maximizing similarity; the Euclidean distance between the 
projection of the data (DX) and the generated features (Z) is 
minimized.  
The basic architecture of the RBM is the same as the analysis 
dictionary framework. They differ from each other in the cost 
functions. The main disadvantage of RBM is that (ideally) it only 
works with binary inputs; it can be modified to work with inputs 
that are real numbers between 0 and 1. But the proposed 
formulation does not have such constraints Ð it will work with any 
real or complex data. 

4.Data Acquisition 
In this work, four different consumer appliances (appliance under 
test Ð AUT) are considered Ð laptop charger, desktop computer, 
CFL and LCD monitor. While these are not the only commonly 
occurring consumer appliances, they are chosen since they are 
used both in residences and offices. Five instances of the same 
appliance make and model are considered, and individual 
measurements are made for each instance. A sensor similar to the 
one proposed in [7] is used for collecting both common-mode 
(CM) and differential mode (DM) EMI injected by an appliance 
under test (AUT) on the power line. The experimental setup is 
shown in the figure below. The sensor directly interfaces with the 
phase, neutral and earth power lines through an extension cord 
through which the AUT is powered. The DM EMI is measured 
from the differential across the phase and neutral lines. A high 
pass filter is introduced to remove the 230V, 50Hz power signal 
from the measurement. The CM EMI is measured directly from 
the earth currents.  The measurements are stored in an internal 
buffer within the sensor and then uploaded to an external 
computer for further processing through the wired interface. 

!  

(a) 

!  

(b) 

Figure 7. (a) shows the block view of EMI sensor and 7(b) 
shows the actual test setup used for EMI measurements, 

buffered to local storage using a wired interface. The AUT is 
also connected to the same power line through an extension 

cord. 

Time domain measurements (CM EMI and DM EMI traces) of 
1ms duration were made at a sampling frequency of 15.625MHz. 
A total of 1500 traces are measured for each instance of an AUT. 
In each case, the background noise on the power lines before 
connecting the AUT was also collected for comparison. This 
background component arises from the noise on the electrical 
infrastructure such as power harmonics from the supply side, 
transients from the high voltage loads like heating, ventilation and 
air-conditioning, and emissions from other appliances on the 
transmission line. The measured data shows some interesting 
features. First, the strength of the background component on DM 
EMI measurements are higher than on CM EMI due to the 
presence of harmonics from the power supply on the DM EMI 
measurements. Second, all the IT loads considered, were high-
quality appliances that were fitted with filters specifically targeted 
towards reducing their DM emissions. As a result, most of the 
appliances showed very similar DM EMI signatures. The signal-
to-noise ratio (EMI to background noise) ratio was substantially 
higher for CM EMI measurements than DM EMI measurements. 
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Figure 8. Left to Right: MNIST, CIFAR-10 and SVHN !
5.Experimental Evaluation 

5.1.Benchmarking 
Since we are proposing a new representation-learning framework, 
it is imperative that we compare with existing techniques on 
benchmark problems.  

5.1.1.Datasets  
To test our formulation we used three datasets, MNIST [40], 
Street View House Numbers (SVHN) [41] and CIFAR-10 [42]. 
The MNIST dataset is a handwriting recognition dataset 
developed by Y. LeCun et al. using the larger NIST dataset. It has 
60,000 images of handwritten digits, which were used as training 
images and 10,000 images were used as test images. The SVHN 
dataset is obtained from Google Street View Images dataset. It 
also involves recognition of digits, like the MNIST, however, it is 
significantly harder to do so because of clustering of nearby digits 
and variety of backgrounds. It is a real world problem of 
recognizing the digits from natural scene images. It is a coloured 
images database, with 73,257 images for training, and 26,032 
images for the test. There are also 531,131 simpler training 
images; however, we do not use them. We use format 2 of the 
dataset, which is like the MNIST dataset. Alex Krizhevsky et al. 
compiled the CIFAR-10 dataset from the 80 million small images 
dataset. This dataset contains 50,000 32x32 training images with 
ten classes which are mutually exclusive. CIFAR-10 contains 
images from various categories such as ship, frog, truck and more. 
This dataset contains 10,000 test images. 

5.1.2.Pre-processing 
MNIST: No preprocessing was used on this dataset. 

CIFAR: We used a similar preprocessing as was used by Zeiler et 
al. in [43]. From each pixel, we subtracted the mean of the image 
for all images in the dataset. This suppressed the brightness 

variation in the image. The entire three channel image after the 
mean suppression was used for training and testing. A similar pre-
processing in the form of SVHN database was tried; however, we 
lost the clarity of features in the image by this process. 

SVHN: We use similar preprocessing as used by Sermanet et al. 
[44]. We contrast normalize the Y channel of the YUV images of 
the dataset and use only the Y channel for training and 
classification. The Y channel is locally contrast normalized using 
a Gaussian neighborhood, with a 7x7 window. This made the 
images look more like the MNIST database. The resultant images 
reside in an R1024 space. From figure 5 we see that the Y channel 
contains the shape information in a clear and precise manner as 
compared to the U and V channels. Figure 5c shows the 
preprocessed Y channels of the SVHN dataset. We only use the Y 
channel for training. The same preprocessing is applied to the test 
set before the classification step. 

5.1.3.Results 
We have compared with Discriminative KSVD [32] and Label 
Consistent KSVD (LC-KSVD)[33] was used as the baseline for 
the various datasets. This method has shown to yield better results 
than other dictionary learning techniques for classification 
problems. After generating features by our proposed method, we 
used k-nearest neighbor (KNN) classifier; sparse representation 
classifier (SRC) [35] and artificial neural network (ANN). The no. 
of neighbors used for nearest neighbor classification (unless 
specified otherwise) is 100. The number of hidden layers in neural 
nets was fixed to 100. The SRC is non-parametric. 

Now we describe the parameters for our proposed algorithm. For 
the sparse (unsupervised) and row-sparse (supervised) 
formulations, the number of atoms for using row sparse 
formulation is 200 with a regularization parameter of 0.5. For the 
low-rank formulation, the number of atoms are 500; the 
regularization parameter is 0.27. For the label consistency 



formulation, the number of atoms are 200 with a regularization 
parameter of 0.2; the parameter for learning the linear map is 
unity.  

Table 1. Unsupervised Analysis Deep Dictionary Learning 

Table 2. Row-sparse Analysis Deep Dictionary Learning 

Table 3. Low-rank Analysis Deep Dictionary Learning 

Table 4. Label-Consistent Analysis Deep Dictionary Learning 

Discriminative KSVD and LC-KSVD are not dependent on the 
external classifier; hence their results remain the same. We have 
repeated them in different tables for the ease of comparison. We 
see that our proposed method is at par and even slightly better 

than these well-known synthesis dictionary learning techniques 
for MNIST. SRC does not perform well with our proposed 
framework, but KNN and ANN do. With KNN we always perform 
better than [32] and slightly worse then [33]; with the neural 
network, we always yield the best results.  

MNIST is the easiest dataset; for more complex ones like 
CIFAR-10 and SVHN we always perform significantly better.  

The results are not at par with those of deep learning techniques 
like convolutional neural network, deep belief network or stacked 
denoising autoencoder. However, it would not be fair to compare 
our new yet simple technique to these complex tools. We are 
proposing a new framework for analysis dictionary learning, and 
we have compared it against well-known synthesis dictionary 
learning techniques.  

5.2.Appliance Classification 
Experiments were carried out on the toughest possible scenario. 
The training set consisted of samples from only one of the five 
instances for each appliance while the remaining four instances of 
each appliance constituted the test set. This is also the most 
practical scenario. In the office environment, it is not possible to 
train on every possible instance of the same appliance Ð one 
should be able to identify multiple instances of the same appliance 
after being trained on a single instance. 

The proposed techniques were compared with [6] Ð which was 
specifically developed for appliance classification problems. Deep 
learning techniques like stacked autoencoders and deep belief 
networks were also used. The results from these were as good as 
random labelling Ð basically, all the samples were getting mapped 

to one class, hence the accuracy was always! . 
The results showed no difference with the type of data; raw data 
or Fourier magnitudes or cepstrum features. Even though 
thorough experiments were carried out on these, results for deep 
learning are not reported in this study, as they yield poor results. 

Both CM and DM EMI data were collected. Analysis on the DM 
EMI yields poor results (same as random label assignment), no 
matter what technique is used Ð this supports the prior discussion 
regarding the disadvantages of DM EMI for appliance detection 
and classification. Since this signal is filtered by most of the 
todayÕs sophisticated appliances, there is no distinguishing 
information left. Since DM EMI results are poor, they are not 
presented here. The results shown here are for CM EMI.  

Traditional feature selection methods like Principal Component 
Analysis, Linear Discriminant Analysis and their kernelized 
versions also failed to produce any improvements. Finally, one of 
the most recent information theoretic feature selection techniques 
[38] based on conditional likelihood maximization was used. 
These features were input to the neural network (NN) and support 
vector machine (SVM) for classification. 

The proposed techniques, described in the previous sections, were 
implemented on the raw time-domain data, but it yielded poor 
classification results. This is because the time domain data is not 
synchronized, i.e. the samples are shifted versions of each other. 
Operating on the Fourier frequency magnitudes yields somewhat 
superior results. However, the best results are obtained for 
cepstrum features. The motivation for using cepstrum features 
follow from [39] Ð where it was used for feature extraction on an 
energy disaggregation problem. Some representative cepstrum 
features for different appliances are shown in Fig. 8. This figure 
shows that the features look similar for different instances of the 
same appliance but are different across different appliances. The 

Method MNIST SVHN CIFAR-10

Disc. KSVD [32] 82.6 25.7 17.8

LC-KSVD2 [33] 94.1 30.0 26.0

Proposed + KNN 91.1 55.0 31.9

Proposed + SRC 84.7 66.4 32.3

Proposed + ANN 95.3 76.6 46.0

Method MNIST SVHN CIFAR-10

Disc. KSVD [32] 82.6 25.7 17.8

LC-KSVD2 [33] 94.1 30.0 26.0

Proposed + KNN 91.1 55.6 31.4

Proposed + SRC 84.6 66.9 33.8

Proposed + ANN 95.8 74.5 42.3

Method MNIST SVHN CIFAR-10

Disc. KSVD [32] 82.6 25.7 17.8

LC-KSVD2 [33] 94.1 30.0 26.0

Proposed + KNN 93.2 57.3 32.0

Proposed + SRC 86.2 73.1 32.9

Proposed + ANN 96.4 78.4 45.6

Method MNIST SVHN CIFAR-10

Disc. KSVD [32] 82.6 25.7 17.8

LC-KSVD2 [33] 94.1 30 26

Proposed + KNN 93.2 59.2 32.6

Proposed + SRC 87.7 76.7 32. 7

Proposed + ANN 96.3 78.6 46.2

1
num of appliances

=



last category, background noise, is the data measured when there 
are no appliances connected to the power lines. The dictionary 
learning techniques were applied to the cepstrum features. 

The features generated by the dictionary learning process are used 
to train a neural network for classification. For the test data, the 
features are simply generated by multiplying it with the learned 
dictionary. These features are input to the learned neural network 
for classification. The overall classification accuracy across 
various methods is shown in Table 13. 

However, the overall classification accuracy does not yield 
insight. Therefore the confusion matrices are shown for all the 
appliances in following Tables 5 through 12. The diagonal values 
demonstrate the percentage of correct classification. The off-
diagonal elements show the proportion of a device being 
misclassified as some other device. 

!  

Figure 9. Cepstrum features – horizontal axis – frequency in 
kHz and vertical axis – Volt 

Table 5. Confusion Matrix - Unsupervised ADL 

!  

Table 6. Confusion Matrix – Row-sparse ADL 

!  

Table 7. Confusion Matrix – Low-rank ADL 

!  

Table 8. Confusion Matrix – Label-Consistent ADL 

!  
Table 9. Confusion Matrix [5] 

!   
Table 10. Confusion Matrix – CLM [38] + Nearest Neighbor 

!  
Table 11. CLM [38] + Support Vector Machine 

!  
Table 12. Confusion Matrix [6] 

!  
* Please note that the results from Table 12 cannot be directly 
compared with [6]. This is because of the random splits used in 
[6] are different from ours.  

Table 13. Overall Classification Results 

*RS Ð row-sparse; LR Ð low-rank; LC Ð label-consistent 

6.Conclusion 
In this work, the problem of identifying consumer appliances, 
used in most office environments, by their EMI signatures was 
addressed. This problem has gained interest since the publication 
of ElectriSense [5] in 2010. The main difference between [5] and 
[6] is that here the common mode (CM) EMI signature is acquired 
whereas the previous one used differential mode (DM) EMI 
signature. The shortcomings of DM EMI are discussed Ð the 
power signal and its harmonics interfere with the DM EMI; hence 
analyses based on such signatures are not reliable. CM EMI 

CFL CPU LCD LC Noise
CFL 65.6% 0.8% 0.4% 3.1% 5.8%
CPU 1.7% 88.3% 5.2% 0.1% 0.0%
LCD 3.3% 9.4% 79.9% 26.2% 0.0%
LC 3.7% 1.6% 14.5% 68.4% 0.0%
Noise 25.7% 0.0% 0.0% 2.2% 94.2%

Confusion Matrix: Unsupervised ADL

CFL CPU LCD LC Noise
CFL 69.2% 1.1% 0.1% 1.0% 4.7%
CPU 1.7% 88.1% 3.5% 0.0% 0.0%
LCD 2.7% 8.7% 79.9% 25.1% 0.0%
LC 3.4% 2.1% 16.4% 73.0% 0.0%
Noise 22.9% 0.0% 0.0% 0.9% 95.3%

Confusion Matrix: Row-sparse ADL

CFL CPU LCD LC Noise
CFL 72.0% 0.9% 0.6% 2.1% 5.1%
CPU 0.4% 87.2% 2.3% 0.1% 0.0%
LCD 4.1% 10.2% 79.9% 24.7% 0.0%
LC 2.1% 1.8% 17.2% 70.3% 0.0%
Noise 21.5% 0.0% 0.0% 2.8% 94.9%

Confusion Matrix: Low-rank ADL

CFL CPU LCD LC Noise
CFL 52.8% 5.1% 0.0% 0.9% 0.2%
CPU 4.7% 71.0% 6.8% 0.9% 0.0%
LCD 4.2% 18.6% 79.7% 29.5% 0.0%
LC 1.3% 5.3% 13.0% 60.3% 0.0%
Noise 37.0% 0.0% 0.5% 8.4% 99.8%

Confusion Matrix: LC ADL

CFL CPU LCD LC Noise
CFL 0.0% 75.0% 0.0% 25.0% 0.0%
CPU 0.0% 50.0% 0.0% 50.0% 0.0%
LCD 0.0% 25.0% 0.0% 75.0% 0.0%
LC 0.0% 25.0% 0.0% 75.0% 0.0%
Noise 0.0% 25.0% 0.0% 50.0% 25.0%

Confusion Matrix: GMM + kNN (ElectriSense)

CFL CPU LCD LC Noise
CFL 50.5% 38.4% 20.4% 31.2% 20.0%
CPU 9.3% 51.3% 0.0% 0.5% 0.0%
LCD 17.9% 0.1% 79.4% 0.3% 0.0%
LC 13.0% 10.1% 0.2% 68.0% 0.0%
Noise 9.2% 0.0% 0.0% 0.0% 80.0%

Confusion Matrix: CLM + NN

CFL CPU LCD LC Noise
CFL 29.3% 25.4% 1.1% 15.7% 0.1%
CPU 9.4% 49.4% 6.5% 6.7% 6.5%
LCD 27.9% 5.2% 84.2% 8.2% 5.0%
LC 23.0% 20.0% 8.2% 69.4% 8.4%
Noise 10.4% 0.0% 0.0% 0.0% 80.0%

Confusion Matrix: CLM + SVM

CFL CPU LCD LC Noise
CFL 89.90% 4.90% 13.30% 5.60% 5.20%
CPU 0% 64.20% 0.60% 11.90% 0%
LCD 5.60% 8.90% 67.10% 1.10% 4.30%
LC 0% 11.10% 0% 69.40% 3.70%
Noise 4.50% 10.90% 19% 12% 86.80%

Confusion Matrix: [6]

[5] [6] CLM + 
NN

CLM + 
SVM

ADL R S 
ADL

L R 
ADL

L C 
ADL

30 75.5 65.87 62.46 79.29 81.12 80.85 80.20



measurements are unaffected by the power signal and hence the 
CM EMI carries more discerning information about appliances.  

Prior techniques [5, 6] for appliance identification based on EMI 
signature were largely heuristic. In this work a new technique for 
feature extraction is developed Ð analysis dictionary learning. The 
basic formulation is unsupervised; three supervised variations are 
also proposed. The proposed formulation generates features, 
which are further employed to train a neural network for 
classification. The results show that the proposed method yields a 
significant improvement over [5, 6] 

There are two benefits of analysis dictionary learning. It has a 
faster operation compared to prior synthesis dictionary learning. 
This is because, in synthesis dictionary learning, one needs to 
solve a convex optimization problem iteratively Ð this is time-
consuming. Analysis dictionary learning just requires a matrix-
vector multiplication. Therefore, the feature extraction time during 
testing is drastically reduced. This makes the technique suitable 
for real-time processing. 

The other benefit of this approach is for the future. We would like 
to address the scenario where multiple appliances are running 
simultaneously. This is the disaggregation problem. It is possible 
to extend the dictionary learning based approach to solve this Ð 
synthesis dictionary learning has already achieved this for smart-
meter data. Also, there are several applications based on energy 
disaggregation / non-intrusive load monitoring; currently they are 
based on power meter readings. We would like to explore if such 
problems can be solved in a better fashion using CM EMI 
signatures and analysis dictionary learning. 
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