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Abstract

Simulation of radar cross-sections (RCS) of pedestrians at automotive radar frequen-

cies forms a key tool for software verification test beds for advanced driver assistance

systems. Two commonly used simulation methods are: the computationally simple

scattering center model of dynamic humans; and the shooting and bouncing ray tech-

nique based on geometric optics. The latter technique is more accurate but due to its

computational complexity, it is usually used only for modeling scattered returns of

still human poses. In this work, we combine the two methods in a linear regression

framework to accurately estimate the scattering coefficients or reflectivies of the point

scatterer model which we subsequently use to simulate range-time, Doppler-time and

range-Doppler radar signatures for a realistic automotive radar signal model. The

simulated signatures show a normalized mean square error below 10% and a struc-

tural similarity above 81% with respect to measurement results generated with an

automotive radar at 77 GHz.
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Chapter 1

Introduction

1.1 Motivation

Pedestrians - especially children, senior citizens and those with disabilities - are

among the most vulnerable road users. Anywhere from 12% to 38% of the road fatal-

ities occur to pedestrians [1]. Recently, there has been significant research focus on

developing advanced driver assistance systems (ADAS) for improving driving con-

ditions and reducing road fatalities. Pedestrian detection, one of the key objectives

of ADAS, has been researched with both automotive cameras [2, 3] and radars [4,

5]. Camera images offer key features - in the form of shapes, sizes and texture cues

- for enabling automatic detection and recognition. However, the performance of the

camera is affected by light and visibility conditions. Automotive radars, unlike cam-

eras, can operate continuously, under low visibility conditions and, in some cases,

in non-line-of-sight conditions as well. Most importantly, the swinging motions of

a pedestrian’s arms and legs, while walking, give rise to distinctive Doppler radar

signatures [6–13]. These micro-Doppler signals are different from those generated

by other dynamic bodies on the road such as bicycles and cars and hence can be used

for automatic target recognition [6, 14–19].

The performance of these algorithms rely on the availability of large training

databases gathered in a variety of scenarios. They must comprise of data from pedes-

trians of different ages, heights and girth; performing different activities and moving

at different orientations with respect to the radar. There are two methods of generat-

ing the training data. One method is to collect the data from real pedestrians using

actual automotive radar sensors. The advantage is that the training data is real and can

be gathered both in laboratory conditions and during test drives. However, the disad-
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vantage is that the database must be updated based on hardware modifications to the

sensor or due to software changes in the signal processing. Second, the data may be

corrupted by the presence of clutter from the local environment (both static and dy-

namic) and limitations of the sensor. Labelling of radar measurement data gathered

over long test drives also requires painstaking efforts. Finally, pedestrians are di-

electric bodies of much smaller RCS than other road targets and are unpredictable in

terms of motion and posture. The alternative is to simulate the radar signatures [20].

The advantage is that the simulated radar signatures can be rapidly generated for a

variety of sensor parameters and target scenarios. Also, the simulations can be easily

integrated with the radar test bed and signal processing platforms for rapid prototyp-

ing and validations. Finally, since the simulated data may be made free of channel

artifacts such as clutter, the simulation results may facilitate identifying cause and

effect of the underlying radar phenomenology.

1.2 Literature review

Simulations of radar micro-Doppler signatures have been extensively researched

over the last decade [20–23]. The methods have included simple pendulum models of

the human motions [24, 25]; analytical models of walking motion derived from bio-

mechanical experiments [26]; and computer animation models for describing more

complex human motions [27–30]. The motion models are subsequently combined

with electromagnetic models of radar scattering off humans. Full wave electromag-

netic solvers yield very accurate predictions of radar cross-sections (RCS). However,

they are not used for modeling humans due to the considerable computational com-

plexity (in terms of time and memory) in modeling three-dimensional spatially large

dielectric bodies at automotive radar frequencies (24 GHz and 77 GHz). Further,

humans are dynamic and have a distinct pose and posture during each instant of

any motion such as walking. A slightly less computationally expensive alternative

is based on shooting and bouncing rays and geometric optics and has been used

for predicting the RCS of still humans at X-band and Ku-band frequencies [31–33].

However, the technique still remains computationally expensive and cannot be used
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to generate radar data at the rate of pulse repetition frequencies typically used in auto-

motive radars. Hence, ray tracing results cannot be directly used for generating radar

signatures - such as high range-resolution profiles or Doppler-time spectrograms of

humans - which provide key information for automatic target recognition. A third

technique based on the point scattering center model has been widely adopted for

obtaining radar signatures of humans due to its low computational complexity [20,

34]. Here the human is modelled as an extended point target with multiple point

scatterers. The scattering coefficient of each of these point scatterers is determined

from an approximated analytical expression for RCS of a primitive shape resembling

the human body part corresponding to the point scatterer. The time-varying positions

of the point scatterers are obtained from computer animation data. The resulting

radar signatures have shown excellent correlation in terms of their micro-Doppler

features to the signatures derived from real measurement data. However, the method

is very inaccurate in estimating the RCS magnitude due to the approximate nature

of the primitive based model and because the model does not include the effects of

shadowing and multipath interactions between the different body parts. However, the

accurate estimation of RCS is important for the implementation of radar detectors for

generating the receiver operating curves.

1.3 Objective

The objective of the proposed work is to simulate the radar scattered signal of dy-

namic humans in order to generate radar signatures such as range-time, Doppler-time

and range-Doppler ambiguity plots, with accurate reflectivities of scattering center

coefficients. Direct simulation of RCS of humans at radar sampling frequencies us-

ing electromagnetic solvers is impractical due to its computational complexity. In

our method, we rely on the availability of MoCap data of a dynamic human at video

frame rate to generate RCS using electromagnetic ray tracing.
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1.4 Proposed methodology

In this work, we propose a method for accurately predicting the RCS of pedestri-

ans by combining electromagnetic ray tracing with the point scatterer model. Highly

accurate estimates of RCS of the human are generated at video frame rate using the

ray tracing technique. The reflectivities of the point scatterer human model are then

estimated from the ray tracing RCS values using linear regression. These reflectivi-

ties are subsequently integrated with the scattering center model to generate the RCS

at high radar sampling frequencies. Our method is founded on the assumption that

since humans are slow moving targets, their scattering coefficients fluctuate slowly

across multiple radar coherent processing intervals while the positions of the point

scatterers change rapidly across multiple pulse repetition intervals. The proposed

method, thereby, combines the advantages of high accuracy of ray tracing with the

computational performance of scattering center modeling. We derive three types

of radar signatures - high range-resolution profile, Doppler-time spectrogram and

range-Doppler ambiguity diagram from the simulated data. We compare the signa-

tures with similar signatures derived from measurement radar data at 77 GHz. Our

results show a low normalized mean square error (below 10%) and high structural

similarity (above 81%) between the measured and simulated radar signatures. We

also present calibrated monostatic and bistatic RCS of humans at multiple aspect an-

gles, multiple polarizations and for two automotive radar frequencies (24 GHz and

77 GHz).

1.5 Thesis outline

The thesis is organized as follows:

Chapter 2: In this chapter, we provide a brief description of the fairly standard

shooting and bouncing ray technique for RCS estimation. This chapter indicates the

flow of modelling motion capture data to target rendered into small triangular facets.

The RCS is calculated for different polarizations, aspect angles and carrier frequency.
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Chapter 3: This chapter presents our proposed method to use the ray tracing re-

sults to estimate scattering center coefficients which are subsequently used in a point

scatterer model to generate scattered signals at suitable radar sampling frequencies.

Here, we detail the radar signal model in the from of received signal in terms of slow

time and fast time axes. In the later part, we discuss the generation of three radar

signatures viz. range-time, Doppler-time and range-Doppler ambiguity plots. The

algorithm 1 summarizes the simulation methodology.

Chapter 4: In this chapter, we present and analyze the experimental results of

our simulations discussed in above chapters. First, we describe the experimental set

up for jointly collecting radar measurement data and motion capture (MoCap) data.

Next, we present RCS obtained from electromagnetic ray tracing for different po-

larizations. Finally, we present the simulated radar signatures of a pedestrian and

provide the qualitative (Sec. 4.2) and quantitative (Sec. 4.3) comparison with mea-

surement results.

Notation: We use the following conventions in our notations. Scalar variables are

written with small letters; vectors are denoted with overhead arrows; and matrices

are written with bold face capital letters.
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Chapter 2

Radar scattering simulation using electromag-

netic ray tracing

In this chapter, we detail the methodology to simulate the radar returns from a

complex non-rigid human using the physics of ray optics and electromagnetic the-

ory. To simulate the dynamic human motion, computer animation data from motion

capture technologies are exploited. This returns the model of target for each frame

of motion in the form of stick figure. We begin with a stick figure model of a human

motion obtained from MoCap technology as shown in Fig. 2.1.

Figure 2.1: Motion capture (MoCap) data in stick figure format is embodied us-
ing animation software like Poser/Maya. Then the body is rendered with triangular
facets. Radar cross-section is calculated using electromagnetic ray tracing for differ-
ent polarizations.

Each frame of MoCap data is exported to an animation software, such as Poser

Pro from Smith Micro Software [29], where the stick figure is embodied using one

of the in-built libraries of an anatomically accurate human body. The human body is

then rendered into a three-dimensional poly-mesh figure composed of Q triangular

facets of suitable resolution [35]. The resulting poly-mesh data are used for further
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processing.

Our objective is to estimate the RCS at fc carrier frequency using the shooting

and bouncing ray technique described in [36]. It is a very accurate but computation-

ally extensive method to simulate the radar scattering from spatially large non-rigid

targets incorporating the effects of dielectric constants of target and different polar-

ization. In the following sections, we will briefly describe how we have applied the

technique for modeling the RCS of humans. We consider a human standing on an

x− y ground plane with the height along the positive z axis.

2.1 Illuminating rays

We simulate a bunch of parallel rays along the radar line-of-sight, φ̂i (incident

azimuth angle with respect to positive x axis), emanating from two-dimensional grid

points on an illumination plane ΩI as shown in Fig. 2.2. The rays are uniformly

spaced λ
10

apart where λ is the wavelength, and are incident upon the poly-mesh

human in the radar’s far-field. ΩI spans the size of the human along the three axes.

Figure 2.2: Parallel rays, along radar line-of-sight (φ̂i), emanate from two dimen-
sional grid points uniformly spaced λ

10
apart on an illumination plane ΩI . An inci-

dent ray that intersects qth triangular facet on human body with normal n̂q gives rise
to reflected ray. When an incident ray intersects more than one facet, the nearest
triangular facet is assumed to be illuminated while the remaining are considered to
be shadowed.
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The associated electric field with each ray is

~Ei(~r) =
(
(− sinφix̂+ cosφiŷ)Ei,h + ẑEi,v

)
e−jkφ̂

i·~r, (2.1)

where k = 2π
λ

is the propagation constant; Ei,h and Ei,v are the horizontal and

vertical polarization components respectively and assumed to be unity; and ~r is the

position vector of the field.

2.2 Ray - Surface intersections

We find the intersection point, ~r uq = [xuq , y
u
q , z

u
q ], between a uth ray and a qth

triangular facet with vertices, ~xAq , ~x
B
q and ~xCq , on the human body using

xuq = xu + q cosφi

yuq = yu + q sinφi

zuq = zu,

(2.2)

where ~r u = [xu, yu, zu] is the originating point of the uth ray on ΩI . The vertices of

the triangle are along the anti clock-wise direction. Since ~r uq also lies on the plane of

the triangle,

n̂q ·
(
~r uq − ~xAq

)
= 0, (2.3)

where n̂q is the unit normal vector of the plane, which can be estimated from

~nq = (~xCq − ~xBq )× (~xAq − ~xBq ). (2.4)

We use (2.2) and (2.3) to solve for q and thereby ~r uq . Now, ~r uq lies within the triangle

if

~nq ·
(
(~xBq − ~xAq )× (~r uq − ~xAq )

)
> 0,

~nq ·
(
(~xCq − ~xBq )× (~r uq − ~xBq )

)
> 0,

~nq ·
(
(~xAq − ~xCq )× (~r uq − ~xCq )

)
> 0.

(2.5)
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Based on the above mathematical formulations, there can be three possibilities: A

ray may not intersect any facet on the human body if the intersection point does

not lie within any triangle; or it may intersect just one facet of the body; or it may

intersect more than one facets as shown in Fig. 2.2. In the first case, there will be no

scattered response from the body due to ray u. In the last case, we assume that only

the facet nearest to ΩI (lowest value of parameter q in (2.2)) scatters the signal while

the remaining facets are in shadow and do not contribute to the scattered field.

2.3 Reflected rays

The scattered electric field from the qth facet at any point ~r s is described by

~Er
q (~r

s) =
(
ĥEr,h

q + ẑEr,v
q

)
e−jkφ̂

r
q ·~r s , (2.6)

where ĥEr,h
q and ẑEr,v

q are the horizontal and vertical polarization components re-

spectively. The direction of the reflected ray, φ̂rq, is estimated from Snell’s law by

φ̂rq = φ̂i − 2(φ̂i · n̂q)n̂q. (2.7)

The human body is a complex dielectric medium of skin, tissues and bone. However,

at high frequencies (24 GHz and 77 GHz), there is little penetration through the skin

and therefore, we model the human body as a single layer dielectric with relative

permeability ε′r(fc) = εr(fc) − σc(fc)
j2πfcε0

. The dielectric constant and conductivity are

εr = 6.63 and σc = 38.1 S/m at 77 GHz [37] and εr = 50 and σc = 1 S/m at 24

GHz [31, 33]. The incident electric field is transformed to the local vertical, ~Ei,v′ , and

horizontal polarization, ~Ei,h′ components corresponding to the plane of the triangle.

If ψ is the angle between φ̂i and n̂q, then the planar horizontal and vertical reflection
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coefficients, Γh
′
q and Γv

′
q are given by

Γh
′

q =
cosψ −

√
ε′r

√
1− sin2 ψ

ε′r

cosψ +
√
ε′r

√
1− sin2 ψ

ε′r

Γv
′

q =
− cosψ +

√
1
ε′r

√
1− sin2 ψ

ε′r

cosψ +
√

1
ε′r

√
1− sin2 ψ

ε′r

.

(2.8)

The strength of the reflected field ~Er
q components are given by

Er,h
q =

(
Γh

′

q E
i,h′ĥ′ + Γv

′

q E
i,v′ v̂′

)
e−jkζ · ĥ (2.9)

Er,v
q =

(
Γh

′

q E
i,h′ĥ′ + Γv

′

q E
i,v′ v̂′

)
e−jkζ · ẑ, (2.10)

where ζ is the path difference travelled by the wave |~r uq − ~r u|. The reflected rays or

secondary rays may return to the radar receiver or may bounce off other body parts

giving rise to tertiary rays and so on. The reflected rays (secondary, tertiary or higher

order) that return to the radar receiver are modelled as falling on an exit aperture

ΩE parallel to ΩI . For each bounce off a body part, the steps from (2.2) to (2.7) are

repeated. The amplitude of the field falls for each successive bounce while the phase

of the field is estimated from the path travelled by the rays.

2.4 Back-scattered rays and RCS calculation

The scattered field at the exit aperture plane, ~Es(~r e), is distributed in a non-

uniform manner in the aperture plane where ~r e indicates the intersection of the

scattered ray with ΩE . We perform a two-dimensional interpolation to obtain the

scattered field across the uniform grid points on ΩE . Then, the scattered field in

a direction φ̂s is given by integrating the scattered electric field across the whole

aperture ΩE . The resulting fields have both the horizontal and vertical polarization

components. Hence, we can estimate four types of RCS. They are the co-polarized

horizontal (σhh) and vertical RCS (σvv) as well as the cross-polarized RCS (σhv and
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σvh).

σhh = 4π

∣∣∣∣ jk2π

∫∫
ΩE

Er,h

Ei,h
ejkφ̂

s·~r eds

∣∣∣∣2 (2.11)

σvh = 4π

∣∣∣∣ jk2π

∫∫
ΩE

Er,v

Ei,h
ejkφ̂

s·~r eds

∣∣∣∣2 (2.12)

σhv = 4π

∣∣∣∣ jk2π

∫∫
ΩE

Er,h

Ei,v
ejkφ̂

s·~r eds

∣∣∣∣2 (2.13)

σvv = 4π

∣∣∣∣ jk2π

∫∫
ΩE

Er,v

Ei,v
ejkφ̂

s·~r eds

∣∣∣∣2 . (2.14)

Based on the incident and scattered angles φi and φs, we can compute the bistatic

RCS for both types of polarizations. When φs = φi, the RCS corresponds to the

monostatic case.
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Chapter 3

Proposed method: Estimation of scattering co-

efficients of point scatterer model using RCS

from ray tracing

The ray tracing method described above provides accurate estimates of the RCS

of the whole human body based on the posture described by each frame of the MoCap

data. However, the technique still remains computationally expensive and cannot be

used to generate radar data at high radar sampling frequencies. Hence, ray tracing

results cannot be directly used for generating radar signatures - such as range-time,

Doppler-time and range-Doppler plots - of extended targets such as humans. In this

chapter, we propose a method to obtain the radar signatures by hybridizing the ray

tracing results and the scattering center model using the MoCap data.

3.1 Radar signal model

We begin by assuming that a monostatic radar is located at the origin. We

model the radar transmit waveform as a frequency modulated continuous waveform

(FMCW) of center carrier frequency fc, radar bandwidth (BW ) and chirp factor

(γ = BW/Tupchirp) as shown in Fig. 3.1. The transmit signal, xp(τ), over a single pth

pulse repetition interval (PRI), TPRI, is given by

xp(τ) = rect
(

τ

TPRI

)
ej(2πfcτ+πγτ2), (3.1)
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where

rect
(

τ

TPRI

)
=

1, 0 ≤ τ ≤ Tupchirp

0, Tupchirp < τ < TPRI.

(3.2)

The interval between the up chirp duration Tupchirp and TPRI may be regarded as dead

time. We assume that the transmitted waveform spans Tlong duration consisting of

Figure 3.1: Radar signal model of linear frequency modulated continuous waveform
of Tupchirp duration with chirp rate γ and TPRI pulse repetition interval (PRI). Each
Tupchirp consists of N samples of fs = 1

Ts
sampling frequency. Tlong is the duration

of L coherent processing intervals (CPI) each consisting of P PRIs. Tshort is the time
interval between M PRIs within Tlong.

L coherent processing intervals (CPI) each of P PRIs. The radar signal falls upon

a dynamic target of B point scatterers with scattering coefficients or reflectivities,

{ab, b = 1 : B}, which are assumed to be constant over the radar bandwidth and

over the duration of Tlong. If the time-varying radial distance of each of bth point

scatterer with respect to the radar is rb(t), then the approximate baseband received

signal can be written as

y(τ, t) ≈
B∑
b=1

ab rect

(
τ − 2rb(t)

c

TPRI

)

exp
(
−j2πfc

2rb(t)

c

)
exp

(
jπγ

(
τ − 2rb(t)

c

)2
)
,

(3.3)

where c is the velocity of light. The model in (3.3) is called the primitive model

or scattering center model. The scattering center model is computationally simple
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to execute the radar signatures, provided the positions and scattering coefficients of

the scattering centers are available. Generally, the scattering centers are assumed to

correspond to trackers placed on the live subject whose positions are gathered using

MoCap technology. The position vector data is spline interpolated from the video

frame rate ( 1
Tf

) to the pulse repetition frequency ( 1
TPRI

) of the radar. In prior works,

the scattering coefficients, ab, have been estimated from the size, shape and orienta-

tion of primitives of body parts corresponding to the scattering centers [19, 26]. For

example, a marker placed on the human arm corresponds to an ellipsoid of dimen-

sions comparable to the human arm. The approximate nature of the scattering center

coefficient results in very poor accuracy in the magnitude of the radar signatures.

We propose to use the ray tracing results to obtain more accurate estimates of the

scattering coefficients.

Based on the radar sampling frequency and pulse repetition frequency, the nth

fast time sample of the discrete received signal for the pth PRI is

Y [nTs, pTPRI] = Y [n, p] =
B∑
b=1

ab rect

(
n− 2rb[p]

cTs

N

)

exp
(
−j2πfc

2rb[p]

c

)
exp

(
jπγ

(
nTs −

2rb[p]

c

)2
)
,

(3.4)

where {p = 1 : LP} and {n = 1 : N}.

3.2 Linear regression model

The ray tracing techniques, described in the previous section, provided the RCS

estimates (σvv[fTf ], σ
hh[fTf ]) at fc for the whole human body at the video frame

rate ( 1
Tf

) of the MoCap data. Since vertical co-polarization is the most commonly

used framework in automotive scenarios, we interpolate σvv[f ] to radar pulse repe-

tition frequency ( 1
TPRI

) to get σvv[p]. The scattering coefficients can be assumed to

be uniform across the radar bandwidth at automotive radar frequencies. Therefore,√
σvv[p] may be regarded as the first fast time sample of the scattered signal in (3.4),
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at every pth PRI with γ = 0 (ray tracing is applied at single frequency).

√
σvv[p] = Y [n = 1, p] =

B∑
b=1

ab exp
(
−j2πfc

2rb[p]

c

)
. (3.5)

Now if we assume that for slow moving humans, the reflectivities of the point scat-

terers (ab) fluctuate very slowly across L CPIs (Tlong) but the positions of the point

scatterers (~rb) change significantly across M PRIs (Tshort = M ×TPRI), we can frame

a linear regression model ΦA = Ψ using

Φ =


e−j2πfc

2r1[1]
c e−j2πfc

2r2[1]
c . . . e−j2πfc

2rB [1]

c

e−j2πfc
2r1[M ]

c e−j2πfc
2r2[M ]

c . . . e−j2πfc
2rB [M ]

c

...
... . . . ...

e−j2πfc
2r1[LP ]

c e−j2πfc
2r2[LP ]

c . . . e−j2πfc
2rB [LP ]

c

 (3.6)

and

A =


a1

a2

...

aB

 ,Ψ =



√
σvv[1]√
σvv[M ]

...√
σvv[LP ]

 . (3.7)

The integer number of rows of Φ ∈ CK×B is obtained by rounding bLP
M
c to the

nearest integer. We estimate the reflectivities of the B point scatterers by solving for

A using ordinary least squares (min
A
||Ψ−ΦA||22) [38], as shown below

A =
(
ΦTΦ

)−1
ΦTΨ. (3.8)

Once the scattering center coefficients are estimated, they can be used in (3.4) to

obtain the radar received data Y [n, p]. The choices of L (and thereby Tlong) as well

as M (and Tshort) are critical while P is fixed by the radar specifications. Since

humans are typically slow moving targets, low values of Tshort will result in very

small changes between rb[p] and rb[p + M ]. This could result in singularity errors
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in the solution. On the other hand, large values of Tshort will result in long Tlong

intervals which is undesirable since the scattering coefficients are unlikely to remain

unchanged over long durations.

In the above method, we have discussed how to estimate ab for a monostatic radar

configuration of vertically polarized radar. However, the method can be easily mod-

ified to allow considerable flexibility in terms of radar carrier frequency, bandwidth,

radar position, aspect angles and polarization.

• Depending on the polarization requirement of the simulation framework, we

can generate radar data by selecting corresponding RCS values (σvv, σhh, σvh

and σhv) computed from ray tracing for (3.5).

• Similarly, we can change from monostatic to bistatic radar configuration in

(3.3). We can obtain the bistatic radar signatures by choosing the bistatic RCS

values computed from ray tracing.

3.3 Generation of radar signatures

The two-dimensional radar data Y [n, p] along the fast and slow time axes are

processed through Fourier transform to obtain three types of radar signatures for

every Tlong duration. The three signatures are: range-time (χ̃RT), Doppler-time (χ̃DT)

and time-varying range-Doppler ambiguity plots (χ̃RD). As mentioned earlier, each

Tlong interval of the radar data consists of L CPIs each of P PRIs.

3.3.1 Range-time profile

The high resolution range-time profile is generated by implementing the one-

dimensional Fourier transform on Y [n, p] along the fast time axis for each pth PRI as

shown in

χ̃RT
p [g∆r] = χ̃RT

p [g] =
N∑
n=1

Y [n, p]H1D[n]e−j
2πgn
N ,

g =
−N

2
:
N

2
− 1

(3.9)
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where, ∆r = c
2BW

is range resolution and H1D[·] ∈ RN×1 is a one-dimensional

window function.

3.3.2 Doppler / velocity spectrogram

The Doppler spectrogram is generated by implementing the one-dimensional

Fourier transform on Y [n = 1, p] along the slow time axis for each lth CPI as shown

in

χ̃DT
l [d∆fD] = χ̃DT

l [d] =
lP∑

p=(l−1)P+1

Y [n = 1, p]H1D[p]e−j
2πdp
P ,

d =
−P
2

:
P

2
− 1

(3.10)

where, ∆fD = 1
PTPRI

is Doppler resolution.

3.3.3 Range-Doppler ambiguity plots

Range-Doppler ambiguity plots are generated for each lth CPI through two-dimensional

Fourier transform of Y [n, p] along the fast and slow time axes as shown below

χ̃RD
l [g, d] =

lP∑
p=(l−1)P+1

N∑
n=1

Y [n, p]H2D[n, p]e−j
2πgn
N e−j

2πdp
P , (3.11)

where, H2D[·] ∈ RN×P is a two-dimensional window function. The process is re-

peated across all the L CPIs to obtain the time-varying range-Doppler ambiguity

plots.

The algorithm 1 summarizes the proposed simulation methodology to generate

the radar signatures with accurate scattering center coefficients for every Tlong period.
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Algorithm 1 Simulation of radar signatures for every Tlong = LP TPRI

Input: MoCap data of B point scatterers on the human body at video frame rate
( 1
Tf

): {~rb[fTf ] = ~rb[f ], b = 1 : B}

1. Implement ray tracing on three-dimensional poly-mesh structure obtained
from stick figure for every frame σvv[f ], f = 1 : F

2. Spline interpolate frames {f = 1 : F} of position vector of point scatterer
data along with the RCS derived from ray tracing from video frame rate to
radar pulse repetition frequency ( 1

TPRI
) to obtain {p = 1 : LP} values.

(i) ~rb[f ] −→ ~rb[p]

(ii) σvv[f ] −→ σvv[p]

3. Formulate Φ ∈ CK×B where K = bLP
M
c ≈ B such that

Φ =


e−j2πfc

2r1[1]
c . . . e−j2πfc

2rB [1]

c

e−j2πfc
2r1[M ]

c . . . e−j2πfc
2rB [M ]

c

... . . . ...
e−j2πfc

2r1[LP ]
c . . . e−j2πfc

2rB [LP ]

c

 .
Also formulate

A =


a1

a2
...
aB

 ,Ψ =


√
σvv[1]√
σvv[M ]

...√
σvv[LP ]

 .
4. Estimate the reflectivities of B point scatterers by A =

(
ΦTΦ

)−1
ΦTΨ using

ordinary least squares minimization of ||Ψ−ΦA||22.

5. Output: Model received radar signal using position and estimated reflectivi-
ties of point scatterers for every nth fast time sample of pth PRI.

Y [n, p] =
B∑
b=1

ab rect

(
n− 2rb[p]

cTs

N

)
exp

(
−j2πfc

2rb[p]

c

)

exp

(
jπγ

(
nTs −

2rb[p]

c

)2
)
.

6. Use Y [n, p] to obtain three types of radar signatures:

• Implement 1D Fourier transform on Y [n, p] along fast time axis (n) for
every pth PRI to obtain radar range-time signature (χ̃RT).

• Implement 1D Fourier transform on Y [n, p] along slow time axis (p) for
every CPI (P PRIs) to obtain Doppler-time spectrogram (χ̃DT).

• Implement 2D Fourier transform on Y [n, p] to obtain range-Doppler am-
biguity plot (χ̃RD).
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Chapter 4

Experimental Results and Analysis

In this chapter we present the experimental results for validating the proposed

methodology. We collect MoCap data of human motion and use it to simulate radar

data. Simultaneously, we collect hardware based radar data for the same human

subject from a measurement setup at 77 GHz. The experimental setup is discussed in

the following section. We perform ray tracing on the three-dimensional poly-mesh

structure obtained from the stick figure animation of every frame of the MoCap data

to simulate the monostatic RCS of the pedestrian for vertical polarization. Then we

use these values to generate scattering coefficients of the scattering center model of a

human. Finally, we generate the simulated radar signatures which we compare with

measurement results.

4.1 Experimental data collection

We consider a human subject moving along the trajectory shown in Fig. 4.1. We

collect MoCap data of the human motion using Xsens MTw Awinda [39], an inertial

measurement unit containing three-dimensional linear accelerometers and rate gy-

roscopes. 17 trackers (front and back side) are attached to defined locations on the

subject’s body to measure the motion of each body segment. Additionally, position

information of 6 other body segments on the torso and feet are determined by inter-

polation by the MoCap software. Wireless communication between the sensors and

the synchronization station takes place at 60 Hz frame rate. The MoCap data of the

23 markers are used for simulating the radar returns. For validation purposes, the

radar returns from the subject is simultaneously captured using a 77 GHz linear fre-

quency modulated INRAS RadarLog sensor [40, 41]. The simulation parameters for
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the radar signal model discussed in chapter 3 are chosen to match the radar hardware

configurations as listed in Table 4.1.

Figure 4.1: Subject wearing 17 trackers in front (red) and back (blue) view; 6 inter-
polated trackers (green), for collecting MoCap data, walks radially towards the radar
sensor (INSAR RadarLog) from 15 m distance and stops 2 m before the radar along
the trajectory (indicated by blue line). The radar sensor is positioned at [0, 0, 0.65]
m. The wireless communication between the MoCap sensors and the synchroniza-
tion station takes place at 60 Hz frame rate.

Radar parameters
Carrier frequency (fc) 77 GHz

Bandwidth (BW ) 2 GHz
Sampling frequency (fs) 10 MHz

Up Chirp duration (Tupchirp) 51.2 µs
Pulse repetition interval (TPRI) 61.2 µs

No. of chirps per CPI (P ) 1024
Range resolution (∆r) 7.5 cm

Doppler resolution (∆fD) 15.9 Hz
Radar sensor position [0, 0, 0.65] m

Table 4.1: Radar parameters used for simulation are chosen to match the INRAS
RadarLog sensor.

4.2 Results from electromagnetic ray tracing

The animated stick figure model obtained from MoCap is embodied using an

in-built library of a nude male in Poser Pro software from Smith Micro Inc. [29].
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Each frame of the human body is subsequently rendered into a three-dimensional

poly-mesh structure composed of 3052 triangular facets. The data for each frame

consist of three-dimensional position coordinates of the triangle’s vertices which are

exported to MATLAB for further processing. We present the results for illumination

at three aspect angles: φi = 0◦, 45◦ and 90◦. Fig. 4.2 shows a single frame / pose of a

walking human illuminated by a vertically polarized incident electric field at 77 GHz.

The strength of the scattered field from the different human body parts is determined

by the aspect of the target. The thighs and torso of the body scatter stronger signals

than the other body parts (like head or hands). In all the cases, it is evident that some

of the body parts are shadowed from the incident field. The strongest illumination is

observed at frontal incidence φi = 0◦.

(a) (b) (c)

Figure 4.2: A single frame/pose of dynamic human motion illuminated by a verti-
cally polarized incident electric field at 77 GHz for three aspect angles (a) front inci-
dence (φi = 0◦) (b) oblique incidence (φi = 45◦) and (c) 90◦ incidence (φi = 90◦).

Based on the scattered signal from all the body parts, we estimate the total mono-

static RCS of the human at every frame of the MoCap data. We present the results for

a complete walking stride - the full swing motion of a hand/leg - of 69 frames from

2.8 s to 3.9 s for the three different incident aspect angles of 0◦, 45◦ and 90◦ at 77 GHz

in Fig. 4.3a - 4.3c and at 24 GHz, the other popular band of carrier frequencies for au-

tomotive radar [42], in Fig. 4.3d - 4.3f. The figure shows that the co-polarization (σvv

and σhh) components range from -10 dBsm to +5 dBsm. The cross-polarization com-
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Figure 4.3: Simulated monostatic (φi = φs) RCS across multiple frames correspond-
ing to one walking stride obtained from ray tracing for three aspect angles (a) front
incidence (φi = 0◦) (b) oblique incidence (φi = 45◦) and (c) 90◦ incidence (φi = 90◦)
at 77 GHz and (d) - (f) at 24 GHz.

ponents are generally weaker by approximately 10 dB. These RCS values are within

the range of those reported from measurement studies of pedestrians at X-band fre-

quencies [33, 43]. Fig. 4.3d - 4.3f shows that the RCS values are slightly higher for

the horizontal co-polarization scenario when compared to the vertical polarization

especially for the case of frontal incidence (0◦) at 24 GHz. On average, the frontal

incidence also gives rise to the highest RCS values for the monostatic configuration.

In some V 2X applications, it may be useful to have bistatic RCS of pedestrians.

Fig. 4.4, presents the variation of RCS with φs for bistatic angle = φs − φi; for a

single frame/pose for different polarizations and for three different incident angles.

The bistatic RCS corresponds to the monostatic RCS when φs = φi. Interesting,

the bistatic RCS is higher than the monostatic RCS at some aspect angles for some

postures of the human.
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Figure 4.4: Simulated bistatic RCS versus φs such that bistatic aspect angle = φs−φi;
for single frame/pose for three aspect angles (a) front incidence (φi = 0◦) (b) oblique
incidence (φi = 45◦) and (c) 90◦ incidence (φi = 90◦) at 77 GHz and (d) - (f) at 24
GHz.

4.3 Radar signatures generated from simulated and measured

radar data

All the results presented in the previous section were generated with ray trac-

ing alone. The next set of results are generated by hybridization of ray tracing and

point scatterer modeling. We use the vertical co-polarized RCS (σvv) values at front

incidence (φi = 0◦) to match the radar hardware configurations. The scattering coef-

ficients are estimated by solving the linear regression framework in (3.5) where Tlong

(and L) and Tshort (and M ) have to be carefully chosen. Both L and M determine K,

the number of rows in Φ matrix, since K is rounded to the nearest integer bLP
M
c and

P is fixed.

Fig. 4.5a shows the average l2 norm error, ||Ψ−ΦA||22
||Ψ||22

for different values of K.

When K is very large due to small values of M , we get very high errors. This is

because for slow moving targets, such as humans, there is very small variation in the
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position of some of the scatterers (such as torso) in consecutive Tshort intervals. This

results in singularities in the problem formulation. We find that the optimum results

occur when K ≈ B, that is when the Φ matrix is close to a square matrix. Different
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Figure 4.5: To make the choice of Tlong (and L) and Tshort (and M ): (a) Estimation
error ||Ψ−ΦA||22

||Ψ||22
averaged over the number of estimations done for duration of target

motion for different values of K = bLP
M
c is plotted. (b) Comparing the NMSE

between simulated and measured range-time plots for K = 23 and K = 26 for
different values of M .

combinations of L and M can result in similar values of K. However, when M is

very large, this gives rise to a correspondingly large value of L = MK
P

. But long Tlong

duration is undesirable since scattering coefficients are likely to fluctuate over long

intervals due to variations in target aspect. We compared the NMSE of the measured

and simulated range-time ambiguity plots for different M for a fixed K = 23(= B)

and K = 26 in Fig. 4.5b. The result shows that the NMSE is lesser for slightly

over-determined matrix i.e., K = 26(= B + 3). Based on the above studies, we

determined M = 80 and L = 2 to be the optimum values for our simulation. Hence,

the Tlong and Tshort used in the linear regression framework are 12.5 ms and 4.9 ms

respectively.

We present three types of radar signatures - the high range-resolution profile, the

Doppler-time spectrogram and the range-Doppler ambiguity plots and compare these

signatures with those generated from measurement data collected from the radar

hardware. The measurement data is suitably range compensated to obtain the time-
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varying radar cross-section of the target. Since the measurement data is naturally cor-

rupted by noise, an ordered statistics constant false alarm rate (OS-CFAR) algorithm

based on [44] is implemented on the measurement data, which adaptively estimates

the detection threshold for each cell based on neighboring cells. The CFAR algorithm

is not required on the simulation data where noise is not considered. We present both

qualitative and quantitative comparisons between the simulated and measured radar

signatures.

First, we present the high range-resolution profile of the walking human in Fig. 4.6a

and Fig. 4.6b. The figure on the top is generated from simulation data (χ̃RT) while the

one in the bottom is from measurement data (χRT). Values below -40 dBsm threshold

are not shown in both the figures. We observe that the human is first stationary for

1.5 s and then approaches the radar from a range of 15 m to 2 m from 1.5 s to 10.3 s.

The swinging motion of the arms and legs give rise to micro-range features about the

torso that spans approximately 1.5 m. The range ambiguity is 7 cm. Therefore, it is

difficult in both figures to resolve the independent point scatterers from the different

body parts along range. The simulated results closely resembles the measured results

in terms of dynamic range. The torso appears to be the strongest component in both

images when compared to the arms and legs. The range spread due to the spatial

extent of the target is nearly identical in both the images (indicated by horizontal

dashed lines). The vertical dashed lines in both the figures indicate the similarity in

time span also. Thus visually, there is structural similarity in the images.

Next, we examine the Doppler-spectrograms from the simulated (χ̃DT) and mea-

sured data (χDT) in Fig. 4.6c and Fig. 4.6d. Since the human is approaching the

radar, the Dopplers are mostly positive with some negative Dopplers due to the back

swing of the arms and legs. The human is walking at a velocity of approximately

1.5 m/s. This results in a strong torso Doppler component in both images. We can

observe much weaker micro-Dopplers from the arms and legs up to velocities of 5

m/s. The Doppler span for measurement results are slightly higher than the simulated

results due to noise characteristics. The periodicity of the strides in the two figures

shows excellent agreement. There is a strong DC component in the simulation figure
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Figure 4.6: Simulated (a, c, e) and measured (b, d, f) radar signatures of a human
walking towards a 77 GHz monostatic radar. Figures (a) and (b) correspond to range-
time ambiguity plot; (c) and (d) correspond to Doppler-time ambiguity plots; and (e)
and (f) correspond to range-Doppler ambiguity plot for one CPI (from 6.16 to 6.22
seconds).
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that is not present in the measurement results due to a DC filter in the radar hardware

to eliminate static clutter.

Finally, we present the range-Doppler ambiguity plot for a single CPI (from 6.16

to 6.22 seconds) in Fig. 4.6e and Fig. 4.6f. Here we observe that the range and

Doppler ambiguities in both the simulated (χ̃RD) and measured data (χRD) are nearly

identical. We are now able to resolve the arms, legs and torso in the ambiguity plots.

The simulation result enables us to correctly identify the different body parts. Again

the peak and dynamic range of the two plots are very similar.

4.3.1 Quantitative comparison

In the above discussion, we have qualitatively compared the simulated and mea-

sured results. Next, we perform a quantitative comparison between the two signa-

tures in the form of two metrics - the normalized mean square error (NMSE) and the

structural symmetry index (SSIM). The NMSE for the range time plot is computed

by

NMSE =
||χ̃RT − χRT||22
||χRT||22

. (4.1)

The SSIM is a metric used for comparing structural differences such as luminance

and contrast between two images [45]. It is computed by

SSIM =
(2E[χ̃]E[χ])(2covar[χ̃,χ])

(E2[χ̃] + E2[χ])(var[χ̃] + var[χ])
, (4.2)

where E[·], var[·] and covar[·] denote mean, variance and co-variance of the two

images. When the images are identical, its value is 1.

Table 4.2 shows the NMSE and SSIM for the three radar signatures for the duration

of the target motion. All three signatures show low values of NMSE, and SSIM

values close to 1 which indicates the close similarity between the simulation and

measurement data.

Fig. 4.7 shows the NMSE and the SSIM between the simulated and measured

range-Doppler ambiguity plots over the duration of one walking stride (9 Tlong) from
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Range-time Doppler-spectrograms Range-Doppler
SSIM 0.86 0.81 0.99
NMSE 0.04 0.10 0.03

Table 4.2: Quantitative comparison between simulated and measured range-time,
Doppler-time and range-Doppler plots through NMSE and SSIM values for the du-
ration of target motion

5.76 to 6.89 seconds.
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Figure 4.7: SSIM and NMSE values for range-Doppler plots for one complete walk-
ing stride from 5.76 to 6.89 seconds.

The results in the figure show the range of SSIM between 0.96 to 0.99 which is

close to ideal. The NMSE is likewise close to zero.

The computational complexity of the proposed approach required ray tracing to

be carried out at video frame rate, matrix inversion operations for determining scat-

tering coefficients and linear operations for point scatterer modeling at radar sam-

pling frequencies. The matrix inversion operation is computationally not very hard

due to the small size of the matrix ([(K ≈ B)×B]). Among these three steps, the ray

tracing operation is the most computationally expensive. In Fig. 4.8, we indicate the

computational time for generating the results for different processing configurations.
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A realistic model of the human requires the body to be rendered by a large number of

small sized triangular facets for ray tracing. The illumination rays must, likewise, be

densely placed (at least λ
10

apart) to get an accurate RCS estimate. The computational

complexity is determined by the intersection tests between all the illumination rays

and the facets on the body. This results in considerable complexity (800 minutes to

compute RCS at 77 GHz in Fig. 4.8).
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Figure 4.8: Reduction in computation time of RCS using electromagnetic ray tracing,
with introduction of bounding box technique and increasing the number of cores for
parallel processing at 77 GHz and 24 GHz

Several works in graphics have addressed the challenges of reducing the compu-

tational complexity associated with ray tracing [46, 47]. We have implemented the

bounding box test in our work where the poly-mesh human is divided into several

distinct parts each enclosed by a spatial bounding box. Instead of testing every ray

with every triangle, we test every ray with every bounding box. Only if the ray inter-

sects the bounding box, do we test the intersection of the ray with every facet within

the bounding box. By using bounding box technique on a single core processor, we

observed about 14 times reduction in computation time from 800 to 60 minutes in

Fig. 4.8.

Since the ray-triangle intersection tests can be carried out in parallel, the com-

putation time can be further reduced by implementing the algorithm across multiple

parallel processors. The algorithm was implemented using the parallel computing

tool box of Matlab.
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By using the parallel processing with the bounding box technique, the computa-

tion time was further reduced to 8 minutes for a 20 core system.
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Chapter 5

Conclusion

The shooting and bouncing ray technique based on ray tracing and geometric

optics has been used extensively to accurately model the RCS of targets at high car-

rier frequencies. However, the technique is computationally extensive and hence not

suitable for modeling the time-varying RCS of dynamic human motions, at radar

sampling frequencies, since humans are spatially large three-dimensional dielectric

bodies with considerable variation in posture and pose. A computationally simpler

alternative for modeling radar signatures of human motion is based on the scatter-

ing center model. However, the reflectivities of the scattering centers, in prior works,

have been loosely approximated by RCS values of primitives resembling body shapes

resulting in inaccurate estimates of RCS magnitudes.

In our work, we hypothesize that the scattering coefficients fluctuate very slowly

over multiple CPIs while the positions of the scatterers change rapidly across multi-

ple PRIs. Therefore, we estimate the scattering center coefficients by combining the

point scatterer model with the ray tracing RCS estimates in a linear regression frame-

work. The positions of the scattering centers are obtained from an animation model

of a pedestrian gathered from MoCap data. We use the reflectivity estimates to ob-

tain realistic radar scattered signal that are processed to obtain commonly used radar

signatures such as range-time, Doppler-time and range-Doppler ambiguity plots. Si-

multaneous to the MoCap data collection, we gathered measurement data using an

automotive radar at 77 GHz from which the radar signatures were generated. The

simulated signatures showed a low normalized mean square error (below 10%) and

high structural similarity (above 80%) with respect to the measured signatures in-

dicating the efficacy of the proposed method. We also demonstrated the versatility

31



of our simulation method for modeling radar signatures at different polarizations,

aspect angles and carrier frequencies.
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