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Abstract

The generalized finite element method (FEM) approach towards solving the Helmholtz equation

involves a very high computational complexity of the order of O(n3) where n is the number of

nodes of the FEM formulation. Prior research involved exploiting the special properties of FEM

matrices for reducing the computation time and memory involved in solving the large FEM

problems. These included both direct and iterative solvers. In more recent times, graphical

processing units (GPUs) are being used to accelerate the solvers.

In this work, we propose an alternative different approach for solving the Helmholtz equa-

tion with reduced memory requirements by incorporating compressed sensing (CS) techniques

into the original FEM formulation. Our approach is based on the fundamental assumption

that electromagnetic fields are continuous except at source locations and can be represented

with sparse coefficients in alternate transform domains such as wavelets or DCT. We present

different practical aspects of this approach with respect to one-dimensional FEM problems and

conclude by pointing out some open-ended questions with respect to this area of research.
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Chapter 1

Introduction

1.1 Background

The problem related to electromagnetics e.g. calculating electric or magnetic field from Helmholtz

equations are very complex. Finite Element Method is one of the powerful numerical technique

to solve Partial Differential Equations (PDEs) and has various applications in different areas.

For dealing with larger size numerical problems in finite element analysis, many algorithms have

been developed on parallel computers which utilizes a vast number of CPUs to achieve high

speedup [24].

The main attraction point of finite element analysis is the assembly and solution of the sparse

linear system of equations resulting from FEM discretization because these steps are the most

computation-intensive steps. In [13] general approaches of assembling finite element equations

were summarized and discussed which introduce multiple strategies for efficient use of global,

shared and local memory, methods to achieve optimal performance.

Finite element method generates a matrix which has some special properties such as sparse,

banded and symmetric. Direct solvers such as LU and LDLT decomposition techniques exploit

these special properties for solving Helmholtz equation. Iterative solvers, such as conjugate

gradient techniques, reduce the computation time by iteratively solving for unknown. However,
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both of these types of solvers have some limitations especially when they are used in systems

with scarce memory resources such as personal computers. Direct solver has slow response for

larger number of systems. Also, they require too much memory resources for solving large num-

ber of systems. Irregular structured finite element problems of order of 100, 000 unknowns may

be solved by direct methods given a large enough storage space in computer but at tremendous

cost and difficulty. Though iterative solvers require less storage capacity but their performance

depends upon the problems. An adequate preconditioning is required in this case which is not

an easy way to solve the system in an efficient and reliable manner [10]. Also, iterative solvers

approach the solution gradually rather than in one large computational step. Therefore, a tech-

nique can be developed for solving these equations in a systematic manner and without having

problems related to computational complexity and memory space.

1.2 Motivation

The idea behind this thesis work is to provide benefits in terms of computational complexity

and memory. The solution of conventional finite element equations requires computational com-

plexity of the order of O(n3), where n-1 is the number of discrete elements in the problem space.

As the size of the problem grows means if n is large, this complexity becomes a limiting factor

especially when finite element method is used in systems with scarce memory resources such

as personal computers. The alternative of utilizing large servers, distributed or parallel com-

puting, and expensive computational software and licensed packages often involves prohibitive

expenditure. Considering this factor, a different approach for solving the Helmholtz equation

with reduced memory requirements, is proposed by incorporating compressed sensing formu-

lation into original Finite Element Method (FEM). Compressed sensing basically involves the

sampling (either 50% or 25%) of the FEM solution, thus reduces the memory requirement and

complexity.
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1.3 Organization of Thesis

This thesis is organized as follows.

Chapter 2 provides a brief understanding of compressed sensing and a brief intoduction of Fimite

Element Method.

Chapter 3 presents the literature survey of work done on Finite Element Method with different

solvers and a comparitive study of them.

Chapter 4 proposes Finite Element method with our compresses sensing based approach to re-

duce computational complexity and memory requirement.

Chapter 5 discusses the results for different-different cases.

Chapter 6 concludes the thesis by summarizing the contribution of the work and research done

along with the possible extension of our work that can be explored.
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Chapter 2

Precursors

This chapter briefly discusses the theoritical concepts of Compressed Sensing. Also, a brief

introduction of Finite Element Method is presented.

2.1 Compressed Sensing

Compressed Sensing (CS) is an emerging methodology that is used for solving underdetermined

linear system of equations. Compressed sensing is based on the fact that the sparsity of a signal

can be exploited to recover it from sub nyquist samples [5].

2.1.1 Sparsity

Compressed Sensing solves the underdetermined system of linear equations, when the solution

is known to be sparse. The linear system of equation can be expressed as:

ym×1 = Am×nxn×1 (2.1)

The underdetermined system has infinite number of solution. There exists an orthonormal basis

φ such that x=φc with c being sparse. In Eq.2.1 A is called as measurement matrix or sensing

matrix where m<n. Then the compressed sensing problem from Eq.2.1 can also be formulated as
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ym×1 = Am×nφn×ncn×1 (2.2)

In both the equations 2.1 and 2.2 we have prior information related to the sparsity of x. If

the unknown x is k−sparse and the k locations of the nonzero elements in x are known, then

the problem can be solved with reasonable accuracy if the number of equations (m) is larger

than the number of nonzero locations (k). Since, the l2-norm measures signal energy not signal

sparsity, we consider l0-norm that counts the number of non-zero entries in x.

The solution to the Eq.2.1 is sparse then the sparsest solution can be found and this solution

would be unique [4].

min
x
||x||0 (2.3)

subject to y=Ax

Minimizing the l0-norm would yield the sparsest solution and recover a k−sparse signal exactly

with high probability using only m = k + 1 iid Gaussian measurements [1]. Unfortunately

minimizing the l0-norm is both numerically unstable and an NP-hard problem [7]. There are

many greedy algorithm such as Orthogonal Matching Pursuit (OMP) [22] for solving this NP

hard problem but recovery of the signal is poor. So we solve it by relaxing the constraint using

l1-norm.

min
x
||x||1 (2.4)

subject to y=Ax

The l1-norm minimization problem can be solved easily by linear programming. It would exactly

recover k−sparse signal and closely approximate compressible signals with high probability using

only m ≥ cklog(n/k) iid Gaussian measurements [1]. This is a convex optimization problem

that conveniently reduces to a linear program known as basis pursuit [6] whose computational

complexity is about O(n3).
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2.1.2 Measurement Basis

Compressed Sensing has two fundamental key points: sparsity and incoherence. In CS signal

should be sparse in some sparsifying transform domain. The domain can be wavelet or DCT.

Coherence measures the largest correlation between measurement and sparsifying basis. CS

mainly concerns with low coherence pairs. The fourier basis is maximally incoherence in 1D,

2D and 3D also. The coherence between wavelet bases (Haar wavelet) and measurement bases

is
√

2. Our interest in measurement bases comes from the fact that 1) they are incoherent with

systems providing sparse representations of image data and other types of data, and 2) they

come with very fast algorithms; these transform runs in O(n) time. It has been found that

random matrices are largely incoherent with any fixed basis [4].

Gaussian Matrices

This matrix have entries chosen independently from normal distribution with zero mean and 1/n

variance. This is the most commonly used sensing or measurement basis. Being a dense matrix

i.e. values present at every location, they have large storage and involves lot of computation

when a signal is projected onto them.

Binary Matrices

The entries of a random binary matrix takes the value of 1 or 0 with equal probability. These

matrices have lesser storage and computation as compared to Gaussian random matrices while

performing equally well [23].

2.2 Electromagnetic Modeling

Computational Electromagnetics deals with the modeling of electromagnetic fields with physical
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objects and the environment. It typically involves efficient approximation to Maxwell’s equations

and notifies the electromagnetic wave propagation in various medium. This section includes the

basic understanding of Finite Element Method.

2.2.1 Finite Element Method

Electromagnetic wave propagation is described by four particular equations, Maxwell equations,

two of them can be expressed as follows

5×
−→
E = −∂

−→
B

∂t
(2.5)

5×
−→
H = −∂

−→
D

∂t
(2.6)

where E and H are electric and magnetic field vectors respectively. Therefore, we use these two

Maxwell equations to formulate Helmholz equations

52 −→E + k2
−→
E = −ε

−→
H (2.7)

where 52 is laplacian and ε is the permittivity in the medium and k is the propagation constant.

To find the electric and magnetic field, these Helmholtz equation are solved. There are two

methods for solving these Helmholtz equation in differential form: Finite Difference Time Do-

main(FDTD) and Finite Element Method(FEM). Here, we have used finite element method for

one-dimensional problem. The finite element method is a versatile tool for solution of partial

differential equations with specified boundary conditions and has been extensively used in vari-

ous engineering problems. Consider a one-dimensional Helmholtz equation

d

dx

(
α
du

dx

)
+ βu = s, a ≤ x ≤ b (2.8)

This equation is called the reaction-diffusion equation. Reaction term is given by βu and the

diffusion term is given by d
dx

(
αdudx

)
. The solution of the equation is subject to boundary

conditions given by Dirichlet or Neumann boundary conditions u(a)=p or u’(a)=q. Here, u is
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the unknown electric or magnetic field, s is the source excitation, α(x) and β(x) are the material

properties of the medium within the interval and x is the length of the problem space. For a

one-dimensional problem we have problem space Ω. This problem space has infinite number of

points so it is not possible to calculate field at all these infinite number of points. Therefore in

FEM, we divide this interval into finite number of points as shown in Fig.2.1. and calculate the

field at all those finite number of points with the Dirichlet boundary condition ΓD at the end

points of problem space as shown in Fig.2.1.

Figure 2.1: Finite Element One-dimensional Problem Space subdivided into linear
elements

Hence, finite element method converts the Helmholtz equation into weak formulation and recast

as a linear inverse problem:

Hn×nun×1 = bn×1 (2.9)

where Hn×n is the Helmholtz operator, un×1 are the discrete values of u at n nodal positions

and bn×1 arises from manipulations of the source s. H and b matrix are generated by the

weak formulation of Eq.2.8. In weak formulation, both the side of Eq.2.8 is multiplied by a

basis function [21]. These basis function can be defined by interpolation which can have linear,

quadratic and cubic elements. Hence, we calculate the unknown field at all those n points which

has been defined in the problem space Ω. The computational resources (CPU time and memory)

required for solving FEM is of O(n3).
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Chapter 3

Literature Survey

The finite element formulation can be represented as a set of linear equations which can be

written as

Hu = b (3.1)

where H is an n × n matrix, u represents the unknown field vector that is to be determined and

b represents the source vector which is known to us. Many algorithms have been developed for

solving Helmholtz equation. As discussed in the previous chapters, during computation of the

numerical solution of the problem two basic key points which can be considered: large memory

requirement and excessively long computational time.

In Eq.3.1 if H is a non-singular matrix, a great variety of algorithms have been developed.

When H is not sparse, Gaussian elimination is the most preferable approach. But this requires

O(n2) word to store and O(n3) floating-point arithmatic operations. CPU time is also very

high. The matrices resulting from finite element discretization are always sparse, banded and

symmetric. By using these properties memory requirement and computing time both can be

reduced. To utilize these properties many algorithms have been developed in past few years for

handling finite element matrices properly [11]. In this chapter, a review of these algorithms is

presented.

These methods used to solve linear algebraic Eq.3.1 can be categorized into two groups: di-
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rect methods and iterative methods. All direct methods are based on Gaussian elimination.

Sparse direct solvers save memory and computing time by considering the sparsity pattern of

matrix H [11]. We will discuss these algorithms in a detailed manner.

3.1 Finite Element Method using LU Decomposition

One way of solving Eq.3.1 is LU decompostiton. This method decomposes matrix H into two

triangular factors L and U where L is a lower triangular matrix and U is an upper triangular

matrix. For a square matrix H, LU factorization can be represented as

H = LU (3.2)



a11 a12 · · · · · · a1n

a21 a22 · · · · · · a2n

a31 a32 · · · · · · a3n
...

...
...

...
...

an1 an2 · · · · · · ann


=



l11 0 · · · · · · 0

l21 l22 · · · · · · 0

l31 l32
. . . · · · 0

...
...

. . .
. . .

...

ln1 ln2 · · · · · · lnn





u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0
. . .

. . .
...

...
... · · · · · · un−1n

0 0 · · · · · · unn



The solution to the Eq. 3.1 can be obtained by solving

Ly = b (3.3)

and

Ux = y (3.4)

where y can be obtained by forward substitution procedure

y1 =
b1
l11

(3.5)

yi =
1

lii

(
bi −

i−1∑
k=1

likyk

)
; i > 1 (3.6)
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and the unknown field x can be obtained by backward substitution procedure.

xn =
yn
unn

(3.7)

xi =
1

uii

(
yi −

n∑
k=i+1

uikxk

)
; i < n (3.8)

This method has the benefit that we do not need to do Gaussian elimination each time and

it is faster than any other decomposition. In this algorithm, computation increases as O(n2)

for two-dimensional problem and O(n7/3) for three-dimensional problem. Also, the memory

requirement increases as O(n3/2) in 2D and O(n5/3) in 3D.

3.2 Finite Element Method using LDLT decomposition

In this method the matrix H can be decomposed as

H = LDLT (3.9)

where L is the lower triangular matrix and D is the diagonal matrix of L. In this process,

compared to LU decomposition we don’t require upper triangular matrix U. So there is no need

to store the entries from both sides of the diagonal. Hence, the operation count reduces to

O(n3/3).

3.3 Finite Element Method using Frontal and Multifrontal Meth-

od

Frontal and multifrontal method is a way to reduce a large amount of core memory required to
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solve large finite element systems. FEM is assembled from elemental matrices:

H =

M∑
e=1

H(e) (3.10)

where H is the Helmholtz operator and M-1 is the number of elements.

For calculating specific unknown (field values) only the elements associated with it directly

contribute to its equation and all other elements have no contributions. In this method once the

equation is established, it is written to the out of core memory hence, leaving the core memory

for new equations. The matrix in the core memory is called the frontal matrix [11]. The size of

the frontal matrix varies in the process and maximum front width determines the core memory

requirement. So, proper ordering of elements can reduce the maximum front width which further

reduces the core memory requirement.

For large scale two and three dimensional problems, the front width can be quite large. A

large frontal matrix increases the memory requirement as well as the cost of factorization no-

tably. As a remedy of this problem, in [11] a multifrontal method has been described very

effectively with suitable exapmle. This would reduce the cost of factorization and core memory

requirements significantly.

3.4 Finite Element Method using Conjugate Gradient Method

Conjugate Gradient is an iterative method for solving a linear system of n equations where

n is large. It terminates in at most n steps. The complexity reaches to O(n). Memory is

typically linear that is O(n). It automatically generates the direction vectors. The successive

approximations to the solution vector H are calculated as follows

uk+1 = uk + αkpk (3.11)
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where pk are known as direction vectors and αk is chosen to minimize the function in the direction

of pk. The iterative methods like Conjugate Gradient method best suits to sparse systems. If

matrix is dense then best way to solve the system is by back substitution.

3.5 Finite Element Method using Preconditioned Technique

Over the decades, several works have been proposed such as classical preconditioning tech-

niques [8] [17] to solve these linear equations because for achieving 100% accuracy Conjugate

Gradient method demands for many iterations. Therefore, the finite element matrices become

ill-conditioned with larger dimensions. In proceeding of this work, to accelerate the convergence

of the conjugate method preconditioning is required. One of the studies in this area is [12] [19]

where a 2D and 3D solutions of Helmholtz equation is discussed by means of a standard Galerkin

or Galerkin least-squares (GLS) scheme. The solution is obtained by a preconditioned Krylov

subspace technique, specifically a preconditioned GMRES iteration [20] [18]. Three types of pre-

conditioners have been proposed: ILUT, ILUTC and ILUT0. A preconditioned Krylov subspace

method for solving the linear system of Eq.3.1 consists of an accelerator and a preconditioner.

Therefore, a right preconditioned system can be written as

HM−1y = b (3.12)

and

x = M−1y (3.13)

where M is the preconditioning matrix.

Preconditoning matrix can be defined by incomplete LU factorizations which can be obtained

from Gaussian elimination process. A large number of nonzero elements may appear in loca-

tions originally occupied by zero elements. These fill-in elements are often small and may be

dropped to obtain incomplete LU factorizations. Among these procedures, one is ILU(0) which

is obtained by performing the standard LU factorization of H and dropping all fill-in elements.

Here L and U factors have the same pattern as the lower and upper triangular parts of H respec-

tively. Another one is ILU(k) for accurate factorization in which fill-ins are dropped according

13



to their levels in the elimination process. One more class of preconditioner is ILUT (ILU with

Threshold) in which dropping of fill-ins is based on their numerical values. ILUT is based on

two parameters: ς and lfil. Small values are dropped during the elimination using a parameter

ς and large values are kept by lfil.

All the incomplete LU factorization techniques have been tested for different cases when matrix

H has some diagonal dominance properties and found out that ILU techniques are the best

across a broad spectrum of applications even when matrix H is not diagonally dominant. Also,

the effect for different frequency regimes and for different preconditioners have been presented.

In case of ILUT, as the lfil is increased the convergence rate increases.

As our previous discussion that computing time should be less so the number of iteration sholud

be less, this can be achieved by highest values of lfil and lowest value of drop tolerance (ς).

Also, the GLS method gives better accuracy than classical Galerkin method in case of higher

frequency. For Dirichlet problem, it has been seen that ILUT-GMRES solver requires fewer step

than ILU(0)-GMRES to converge. However, the CPU time is slightly greater for ILUT-GMRES.

For Neumann problem, ILUT-GMRES is faster than the ILU(0)-GMRES in terms of iteration

count and CPU time.

3.6 Comparative study of Direct and Iterative solvers

In [10] a detailed comparison of direct and iterative solvers has been discussed.

1. Direct solvers always work for invertible matrx and they are fast for less than 100k un-

knowns. But they require too much memory and CPU time for larger systems. On the other

side, iterative solvers can solve large problems and require O(n) memory.

2. There is a wide variety of iterative solvers, hence the selection of these solvers depends

upon the properties of the matrix. Iterative methods are very effective concerning computer

storage and time requirements.
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3. One of the ease of using iterative methods is that they require fewer multiplications for

large systems. Iterative methods automatically adjust to errors during study. They can be

implemented in smaller programmes than direct methods. They are fast and simple to use when

coefficient matrix is sparse. In terms of benefit, they have fewer rounds off errors as compared

to other direct methods.

4. On the opposite side, the goal of direct methods is to calculate an exact solution in a finite

number of operations whereas iterative methods includes initial approximation and reproduc-

tion of usually improved approximations in an infinite sequence whose limit is the exact solution.

5. Direct methods are suitable for such kind of systems in which most of the entries are non-zero

whereas iterative methods are appropriate for large sparse systems which contains most zeros.

Even when direct methods exists we should give priority to iterative methods because they are

fast and efficient.

3.7 Other Studies

In [9] another method for solving partial differential equation has been introduced. The main

idea is to construct finite element base functions which records the small scale information within

each element and then the small scale information is brought to the large scales through the

coupling of global stiffness matrix. This method is called as Multiscale FEM. Also, they have

shown that the operation count of this method is about twice of that conventional FEM for

a 2D case. Another advantage of this method is its ability to reduce the size of a large scale

computation. This offered a big saving in memory. This is suitable for those problems which

are too large to handle by direct methods. For N number of elements and M number of subcell

elements, conventional FEM requires O(MnNn) CPU memory for solving the problem on fine

grid whereas MFEM requires O(Mn +Nn) CPU memory, where n is the dimension.
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Some other methods have also been proposed such as Algebric recursive Multilevel Solver

(ARMS) [16], Multilevel Fast Multipole Algorithm (MLFMA) [15]. But the MLFMA tech-

nique is very time consuming because of a large constant associated with its computational

complexity.
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Chapter 4

Proposed Formulation

In chapter 2 we have formalized the Finite Element method which includes discretization of the

Helmholtz equation into finite element with n nodes and convert it into linear inverse problem.

We solve this linear inverse problem by incorporating compressed sensing techniques into the

original FEM formulation. Instead of solving the problem on a fine n-point grid we solve it on a

coarse m-point (m < n) grid. So, the proposed technique reduces the computational complexity

as well as the memory requirement. Our approach is based on the assumption that fields can

be represented with sparse coefficients in alternate transform domains such as wavelets or DCT.

For recovery of the original field from compressed field several recovery algorithms are proposed.

This chapter is dedicated to provide an understanding of the propsed formulation. In this

chapter, we discuss the compressed sensing which has been introduced into the original FEM

problem.

4.1 Finite Element Method with Compressed Sensing

In this section we will discuss about the proposed formulation. Finite element solves the field

for n finite points. But as the size of the problem is increased that means if the value of n is

large then it becomes computationally complex to calculate the field. Hence, we take a different

approach to solve the Helmholtz equation efficiently. Therefore, we solve the linear inverse

problem of Eq.2.9 only for m grid points instead of n grid points. The new problem can be
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expressed as:

Hn×nRn×mu
′
m×1 = bn×1 (4.1)

Here R is a random sampling operator from the n-point grid to the sub-sampled m-point grid.

Eq. 4.1 is an over-determined problem so it is easy to solve. Assuming that u’ is the solution

on the coarse m-point grid,

u′ = (HR)†b (4.2)

⇒ u′ = R†H−1b (4.3)

The formula regarding the pseudo-inverse of a product holds under certain conditions [2]. From

Eq. 2.9 and 4.3 we can write:

u = H−1b⇒ u′ = R†u (4.4)

The pseudo-inverse of R is formed from the Canonical basis (Dirac) which means it is defined

by the kronecker delta which is a function of two variables. This function has a value 1 if the

variables are equal and 0 otherwise.

δij =


1 if i = j,

0 if i 6= j.

Hence, it can be efficiently implemented as a selection operation having linear complexity. Our

solution is based on the key feature of the wave field - the field is a piecewise smooth function

with finite number of discontinuities at the source and at material boundaries. Such piecewise

smooth signals may have a sparse representation in various transform domains like wavelets

and discrete cosine transform. CS has exploited the sparsity of a solution to recover it from

its sub-sampled values in several problems across different disciplines and is specially suited for

recovering the fully sampled field at all n points from the partially estimated field at m points.

Compressed sensing assumes that the signal is measured in a basis - in this case the mea-

surement basis is the Dirac. We have mentioned before that the field is not sparse but has a

sparse representation in a transform doamin like wavelet reference or DCT reference. Unfortu-

nately, if the signal is measured in the dirac basis, sparsifying transforms like DCT and wavelet
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are not incoherent with it. CS requires that the measurement basis and the sparsifying basis

should be maximally incoherent from each other. If the coherence is high (low incoherence), the

recovery error is more for a given number of measurements [3].

Owing to such an incoherence requirement, the Fourier basis is the only viable alternative

in this situation since it is maximally incoherent with the Dirac basis. In fact the incoherence

between the Fourier and the Dirac basis is theoretically the maximum possible; between any

other measurement and sparsifying basis (like Gaussian / Binary measurement basis and DCT

/ wavelet sparsifying basis), the incoherence is always less than the Fourier-Dirac pair reference.

Therefore, Fourier basis will yield the best recovery results owing to maximal incoherence with

the Dirac sparsifying basis.

Hence, the field u will be sparse in some transform domain D where it is expressed as Dχ.

This is a realistic assumption since the field will always be continuous except at material bound-

aries and at the sources. Several mathematical transforms exist that can sparsely represent such

piecewise smooth signals, e.g. wavelet, DCT or higher order total variation (TV). The sparsity

of the piecewise smooth field can be exploited to solve Eq.4.4 via l1-norm minimization:

χ = min
χ
||u′ −R†Dχ||2 + λ||χ||1 : u = Dχ (4.5)

Here, λ denotes the regularization parameter. We have proposed two steps. In the first step

Eq.2.9 is solved on a sub-sampled grid (u) using any standard solver since the problem will be

over-determined. In the second step, we recover the field (u) for the fully sampled grid from the

solution obtained from the first step. Solving the second step is not trivial since the problem in

the second step is under-determined.

The computational complexity of the first step of our proposed algorithm is O(m3) where m < n.

The computational complexity in each iteration of the l1-minimization in the second step is the

cost of selection O(n) and the cost of applying the transform D is O(n log n) for Fourier / DCT

and O(n) for wavelets / first order total variation. Therefore, the overall complexity of solving

our problem is significantly less than solving the full FEM directly.
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For recovery of the field (u) for fully sampled grid from the solution obtained after subsampling,

many algorithms have been suggested. [14] shows the comparison of different algorithms. The

best algorithm is Spectral Projected Gradient for l1-minimization (SPGL1). SPGL1 is a solver

for large-scale sparse reconstruction problems. At each iteration, a spectral gradient-projection

method approximately minimizes a least-squares problem with an explicit one-norm constraint.

Only matrix-vector operations are required. SPGL1 does not work for TV minimization.

From Eq.4.5 after getting the values of χ we can easily reconstruct the field u by multiply-

ing it with the coefficients of some sparsifying transform domain. Eq.4.5 is a regularized least

sqaure problem and the regularized term λ is added to the equation to solve an ill-posed prob-

lem or to prevent from overfitting. λ parameter controls the trade-off between the sparsity and

reconstruction fidelity.
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Chapter 5

Results

5.1 Evaluation Parameter

We have considered various cases and generated the results accordingly. To estimate the per-

formance an evaluation parameter is required. In our case, we compare our algorithm with the

original existing technique and selected parameter is Normalized Mean Square Error (NMSE).

NMSE=
||original−reconstructed||2

||original||2

5.2 Results

We have considered a one-dimensional space 0 ≤ x ≤ 10m for the case when source is δ(x −

0.2) + δ(x − 0.8). The boundary condition which has been applied is Neumann boundary con-

dition (u’(0) = 0, u’(10) = 0) at both the ends of the problem space. We solve for field u using

full FEM and using the CS enhanced FEM. In order to study the effectiveness of the CS based

solution, we consider two reconstruction scenarios - First, the reconstruction is carried out with

a 50% partially sampled grid space (m=n/2) and in the second case, with 25% sampled grid

space (m=n/4). This is done for five different cases

1. Free Space

2. Dielecrtic within free space

3. Metal within free sapce (Hign Conductivity medium)
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S.No Medium 0 ≤ x < 3.5 3.5 ≤ x < 6.5 6.5 ≤ x < 10

1 Free space εr(x) = 1, σ(x) = 0 εr(x) = 1, σ(x) = 0 εr(x) = 1, σ = 0

2
Dielectric
within free
space

εr(x) = 1, σ(x) = 0 εr(x) = 7, σ(x) = 0 εr(x) = 1, σ(x) = 0

3
Conductor
within free
space

εr(x) = 1, σ(x) = 0 εr(x) = 18, σ(x) = 3× 1018 εr(x) = 1, σ(x) = 0

4
Conductor
within free
space

εr(x) = 1, σ(x) = 0 εr(x) = 7, σ(x) = 0.01 εr(x) = 1, σ(x) = 0

5
Inhomogeneity
within free
space

εr(x) = 1, σ(x) = 0 εr(x) = R2
R2−R1

(x−R1)2

x2
, σ(x) = 0 εr(x) = 1, σ(x) = 0

R1 = 3.5m,R2 = 6.5m

Table 5.1: Description of electrical characteristics (permittivity εr(x), permeability
µr(x) and conductivity σ(x)) of the 5 media

4. Conductor having low conductivity within free space

5. Inhomogeneity within free sapce

These five different mediums have been applied for 3.5m ≤ x ≤ 6.5m. Description of their

electrical characteristics (conductivity, permittivity, permeability) for these five mediums are

shown in the Table 5.1. Then, the energy is calculated and energy versus effective cell size

(x(m)/Number of points) is plotted in Fig.5.1. This figure conatins the result of convergence

analysis for full FEM and our approach with 50% and 25% sampling. It is obvious from the

figure that convergence is achieved even with less number of points than the conventional FEM

method. Here, we have used DCT as a sparsifying basis. Therefore, we get the reconstructed

field with half of the number of nodes or even with the one-fourth nodes rather than calculating

field for all number of nodes.
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Mediums Resolution
NMSE (CS 25%
sampling)

NMSE (CS 50%
sampling)

NMSE (CS 10%
sampling)

Medium 1 λ
82.5 0.052 0.0085 0.33

Medium 2 λ
175 0.85 0.19 5

Medium 3 λ
125 1.6 0.47 5

Medium 4 λ
82.5 1.6 0.38 4.14

Medium 5 λ
82.5 0.9 0.09 2.4

Table 5.2: Normalized mean square error between the electrical energy estimated
from CS enhanced FEM and ordinary FEM

Based on the convergence point, we get the actual numbering of nodes for which the error be-

tween the field generated by conventional FEM and the field generated by our approach. At

those nmuber of nodes we get the electric field versus grid points (x) graph which is shown in

Fig.5.2. where NBC means Neumann Boundary Condition. This figure depicts that the recon-

structed field is overlapping the original FEM field it means the field is fully reconstructable and

the NMSE between the field, which we are getting from the conventional FEM approach, and

the reconstructed field which we are getting from our compressed sensing approach is very less

which is shown in Table 5.2.

Effect of frequency on the electric field

Further, we have done the analysis to see the effect of frequency on the energy for five cases

given in Table 5.1. We also calculate the energy for λ=2.5m with 25% sampling. Fig.5.3 shows

the comparison between the results for λ=0.25m and 2.5m. From this analysis, we come to know

that larger wavelength means resolution is higher and better is the resolution we reach at the

convergence point fast and the error would be less in this case.

Comparison of our approach with different algorithm

We compare our approach with direct solver (such as LU decomposition method) and iterative

solver (such as GMRES preconditioning method) for all the four different cases. The results

have been shown in Fig.5.4. The results dictate that convergence is achieved even with our
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Mediums Resolution FEM FEM LU FEM GMRES FEM CS

Medium 1 λ
82.5 1.89sec 3.25sec 0.867sec 5.369sec

Medium 2 λ
175 9.122sec 11.527sec 2.07sec 21.456sec

Medium 3 λ
125 109.45sec 118sec 101.8sec 130.235sec

Medium 4 λ
82.5 110sec 116.654sec 103.335sec 128.345sec

Medium 5 λ
82.5 8.31sec 13.185sec 3.145sec 25sec

Table 5.3: Computational time calculated from original FEM, FEM with direct
solver, FEM with iterative solver and FEM with our compressed sensing approach

approach having less number of points.

Computational Memory and Computational time

As we have previously discussed that the direct solvers and iterative solvers has a limitation that

they cannot be used in a system having scarce memory resources. A personal computer with

6GB RAM is unable to solve Helmholtz equation which involves 100, 000 unknowns. The alter-

native of utilizing large servers, distributed or parallel computing, and expensive computational

software and licensed packages often involves prohibitive expenditure. Hence our approach solves

relatively large finite element problems involving 100, 000 unknowns using the limited memory

resources available on personal computers.

From Table5.2 we can conclude that our proposed approach yields solutions within an accu-

racy of 5% while using a computational memory of O(n/10) when compared to the results

generated with conventional direct and iterative solvers.

Table5.3 shows the computational time and Table5.4 shows the computational memory results

for the same resolution that was used in Table5.2.
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Mediums Resolution FEM FEM LU FEM GMRES FEM CS

Medium 1 λ
82.5 98.5MB 96.7MB 46.8MB 20.25MB

Medium 2 λ
175 393.23MB 385.51MB 158.76MB 40.55MB

Medium 3 λ
125 401.12MB 351.48MB 223.31MB 21.17MB

Medium 4 λ
82.5 401.12MB 351.48MB 223.31MB 21.17MB

Medium 5 λ
82.5 393.23MB 385.51MB 158.76MB 40.55MB

Table 5.4: Computational Memory calculated from original FEM, FEM with direct
solver, FEM with iterative solver and FEM with our compressed sensing approach

(a) (b)

(c) (d)

(e)

Figure 5.1: Effective Cell Size versus Energy:(a)FreeSpace, (b)Dielectric within free
space, (c)Metal within free space, (d)Low Conductivity Medium within free space,
(e)Inhomogeneity within free space
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(a) (b)

(c) (d)

(e)

Figure 5.2: Electric Field versus Grid Points for five different cases:(a)FreeSpace,
(b)Dielectric within free space, (c)Metal within free space, (d)Low Conductivity
Medium within free space, (e)Inhomogeneity within free space
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(a) (b)

(c) (d)

(e)

Figure 5.3: Effective Cell Size versus Energy for different frequencies:(a)FreeSpace,
(b)Dielectric within free space, (c)Metal within free space, (d)Low Conductivity
Medium within free space, (e)Inhomogeneity within free space
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(a) (b)

(c) (d)

(e)

Figure 5.4: Effective Cell Size versus Energy comparison of other methods and our
approach:(a)FreeSpace, (b)Dielectric within free space, (c)Metal within free space,
(d)Low Conductivity Medium within free space, (e)Inhomogeneity within free space
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Chapter 6

Conclusion and Future Scope

6.1 Conclusion

For the very first time, this work of accelerating Finite Element Method using Compressed

Sensing has been formulated which is very beneficial in terms of memory saving. Here, we have

corroborated our approach with initial experimental results for the 1D Helmholtz equation. Fi-

nally, we conclude various results

1. Effect of frequency on the electirc field- It shows that if we decrease the frequency (wavelength

increases), we reach the correct solution faster. It means we get the fully reconstructed field

with less error.

2. Effect of different sampling ratio on the field- We have also generated the results for two

sampling ratio (25% and 50%). The results depict that our algorithm also works even for 25%

sampling ratio. We are able to reconstruct the field with very less NMSE value.

3. Effect of different sparsifying transform- The reconstructed approach comtains a measure-

ment sparsifying basis. We have shown the results only for Discrete Fourier transform (DCT).

The computational complexity is O(nlog(n)) for DCT and O(n) for wavelet basis.

29



4. Comparison of our approach having 25% sampling ratio with direct method such as LU

decomposition and iterative method such as preconditioned GMRES approach is done. It de-

scribes that our approach converges faster than both the direct and iterative methods.

6.2 Future Scope

In this thesis, we have focused only on solving FEM for Maxwells equation. The framework can

be extended towards FEM formulations across multiple disciples such as acoustics, thermal con-

duction etc as well as other PDEs. We have proposed this method only in one-dimensional prob-

lem space. Therefore, it can be suitably extended across two-dimensional and three-dimensional

problem spaces.

Also, we can use this compressed sensing approach in fluid dynamics, molecular dynamics and

biomechanics.
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