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Abstract

Adaptive cruise control (ACC) and forward collision warning (FCW) are the two main

features of advanced driver-assistance systems (ADAS) enhancing safe driving. Forward

looking radar detectors form the main building block of these systems. The functionality

of such systems are affected by the frequently occurring environmental structures such as

bridges, tunnels, guardrails, road signs or other overhead structures. The environmental

changes degrades the radar sensors performance as these might cause false targets leading

to unnecessary ACC and FCW actions. It is thus important to correctly classify such

targets to avoid these kind of situations, thus improving the overall performance. This

work proposes a novel method to understand radar data and apply machine learning

algorithms to specifically detect tunnels which was identified as a binary classification

problem. This work can be extended to other enclosed structures such as closed car-

parks.

In our approach, we considered multiple-target detection count and height as the im-

portant parameters based on the subsequent observations after analyzing the available

experimental radar data. With a suitable scheme, we mapped these parameters to two

dimensional matrices using range information which are analogous to a radar grid map.

We implemented logistic regression to model and train the classifier with the matrices

being the input features. We compared the classifier performance for test data with dif-

ferent combinations of feature matrix dimensions and other parameter values. Results

showed that unregularized logistic regression with mini-batch gradient descent using a

feature matrix size of 5 × 5 provided the optimum results with an accuracy of 95%.
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Chapter 1

Introduction

Advanced driver-assistance systems (ADAS) targeted towards increased car and road

safety are being extensively researched and developed. These systems use a combina-

tion of sensors - camera, lidar and radar - whose outputs are processed to automatically

generate suitable control actions in response to a dynamic environment. Front-facing

systems comprising of these sensors are an integral part of ADAS and provide safety

functions such as forward collision warning, adaptive cruise control, emergency brake

assist, pedestrian detection and traffic sign recognition among others [1]. To ensure

a smooth functioning, it is required that the environment surrounding the ego vehicle

(vehicle on which sensor is mounted) should be modelled correctly to detect potential

targets efficiently. While identification of targets like vehicles, pedestrians, etc is impor-

tant to avoid collisions ensuring driver safety, structures like bridges, road-signs, tunnels,

guardrails, road-side barricades, etc. are also necessary to be classified correctly as they

often affect the functionality of ADAS. If not properly sensed, these might be wrongly

identified as potential targets ahead of the ego vehicle resulting in unnecessary control

actions, such as emergency brake assist or forward collision warning, thereby affecting

the overall ADAS performance. To avoid such situations and to improve the perfor-

mance, it is necessary to correctly classify scenarios such as a high-traffic lane in a city,

a parking area or an under-bridge.

Through our work, we have approached this problem by focusing on classifying tunnels.

We propose to use supervised machine learning algorithms on automotive radar data to

identify the presence of tunnels. Though, machine learning techniques have been applied

for several autonomous driving applications such as pedestrian detection [2, 3], street-

side vehicle detection [4] and prediction of change in driver intentions [5, 6], there has

not been any prior work on tunnel detection using machine learning approaches. On the

other hand, camera images can be more helpful for classification provided their structure

1



Introduction 2

details and color maps but we chose to use the radar data due to it’s advantages over

camera. Radar gives accurate position and Doppler information which is not obtained

in camera. For example, using the Doppler information provided by the radar sensor,

we can differentiate between stationary and moving targets but the same cannot be

achieved with the help of a camera sensor. Secondly, performance of a camera sensor

is limited by adverse weather conditions. Varying lighting conditions also affect the

camera performance; same set of images cannot be used for training a classifier for all

the time instances. For example, the camera pictures during the day time cannot be

used for detecting the tunnels in the night.

1.1 Objective

The objective of our work is to perform a binary classification on the processed radar

data obtained from Continental’s proprietary simulation tool to identify the presence

or absence of tunnels. Specifically, we implemented regularized and un-regularized lo-

gistic regression with two gradient descent methods namely batch and mini-batch GD.

Classifier performance was evaluated in terms of performance metrics namely accuracy,

precision, sensitivity and specificity. While we achieved a test accuracy as high as 95%,

improved results can be obtained by further improving the input features and applying

other classification algorithms like support vector machines and neural networks.

1.2 Proposed Method

Our proposed methodology includes three steps - data analysis, feature extraction and

implementation - and is summarized in Figure (1.1).

Figure 1.1: Flowchart depicting the process followed
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• Data Analysis: The goal of this step was to analyze radar detections from avail-

able real-time recordings to find special patterns that can distinguish tunnel from

open space. It was observed that multiple-target detections were significantly high

inside the tunnel unlike the open space. Multiple-target detection count and height

were identified as important parameters and considered for generating the required

input feature. This has been explained in detail in Chapter 2.

• Feature Extraction: Using the range information, multiple-target detection

count and height were mapped to two dimensional matrices which served as the

input feature for classification. Feature matrix size was chosen for the optimal

classifier performance. This has been discussed in Chapter 2.

• Implementation: The problem of tunnel detection was identified as a binary

classification problem. We implemented logistic regression and tested the per-

formance for various cases as discussed later in Chapter 4. Batch and mini-batch

gradient descent were used to test for an optimal performance with different values

of other relevant parameters. Chapter 3 discusses the classifier model for logistic

regression and the gradient descent methods.

We have showed that unregularized logistic regression with mini-batch gradient descent

and a feature matrix size of 5 × 5 provided the optimum results. It has also been shown

that smoothing the predicted output reduced the fluctuations in the output.



Chapter 2

Parameter Selection for Pattern

Recognition

In this chapter, we discuss the experimental data obtained from Continental’s propri-

etary simulation tool for pattern recognition for tunnel detection. The simulation tool

processes radar sensor data pertaining to specific camera recordings of real-time scenar-

ios to generate a set of radar detections. The video recordings provide the necessary

vision while analyzing the output detections on the simulation tool. The radar data are

modeled after the ARS-441 sensor manufactured by Continental Automotive [7]. It is

an automotive radar with an operating frequency of 77 GHz. The ARS-441 is used for

realizing several important functions including adaptive cruise control, emergency brake

assist and forward collision warning. For an approximate cycle time of 60 ms, the radar

sweeps two separate scans:

• Far Range (FR) Scan: Maximum range is 250 m with a field of view (FOV) of

±9◦

• Near Range (NR) Scan: Maximum range is 70 m with a FOV of ±45◦

The processed output of the tool includes two separate lists of detections, FR detections

and NR detections, per scan. Each detection is attributed with the following parameters:

• Longitudinal range (m)

• Lateral range (m)

• Relative velocity (m/s)

• Radar cross-section (RCS, dBsm)

4



Parameter Selection for Pattern Recognition 5

• Azimuth (φ, rad)

• Elevation (θ, rad)

• Probability of detection (Pd)

A valid detection is one which is within the FOV and whose RCS is greater than the

threshold. Any two detections are considered as distinct single target detections if they

can be resolved along range, azimuth or velocity. In other words, if

|r1 − r2| > ∆r

|v1 − v2| > ∆v

|φ1 − φ2| > ∆φ.

Here, rn, vn, and φn represent the range, velocity and azimuth of the nth detection.

∆r, ∆v and ∆φ are the sensor resolutions in terms of range, velocity and azimuth

respectively. When they do not satisfy the above criteria, the detections are termed as

multiple-target detections. The output set of detections provided by the simulation tool

can be visualized in a grid view [8] as shown in Figure. 2.1. Each data point in the grid

is a radar detection and the position of the ego vehicle is at the origin. The number of

detections and their associated parameter values vary scan to scan. Single-target and

multiple-target detections are represented with different colors.

Figure 2.1: Radar detections as seen in a grid view

For our work, we analyzed 11 camera recordings of different durations. The subsequent

observations, discussed in the following section, are with respect to valid stationary
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detections since the tunnels form static targets. Moving detections have not been con-

sidered.

2.1 Choice of parameters

2.1.1 Count of total target detections

Figure. 2.2 show the distribution of target detections obtained from FR scans for five

different scenarios. The lateral range of the detections, along y axis, spans from 0 to

80m and the position of the ego vehicle is now shifted to (40, 0) m. Figure. 2.2(a,b)

and (c,d) show two scenarios when the ego vehicle is in open space and is approaching a

tunnel ahead. Total number of multiple-target detections in the first instant is 8 and in

the second case it is 17. Figure. 2.2(e,f) shows the instant when the ego vehicle is at the

entrance of the tunnel. The total detection count increases to 45 in this case. Figure.

2.2(g,h) depicts the vehicle inside the tunnel with total detections equal to 50. Figure.

2.2(i,j) depicts the vehicle in open space again, just after exiting the tunnel. The total

detections reduces to 23. The detections in this case are slightly more towards the right

side of the vehicle and can be attributed to the presence of a metallic barricade.

2.1.2 Multiple target detections

The pattern that we observe here is that the multiple-target detections are significantly

higher when the ego vehicle is inside the tunnel. These detections start increasing as

the vehicle approaches the entrance of the tunnel, remains high in numbers while the

vehicle is inside the tunnel and decrease towards the exit. This pattern was found to

be consistent for other available recordings as well. To verify the visual observations,

we extracted the processed data provided by the simulation tool and segregated the

multiple-target detections. Figure. 2.3a-c show the variation of multiple-target detection

count for three different recordings. Here, x axis shows the different FR scans that were

recorded. The time resolution between two subsequent frames is approximately 60 ms.

The speed of the ego vehicle varies between 100 km/h (27.8 m/s) to 120 km/h (33.3

m/s). We observe that the multiple-target detections remain consistently high inside

the tunnel as compared to the open space.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.2: Scenarios: Ego vehicle (a,b) in open space, (c,d) approaching tunnel, (e,f)
entering tunnel, (g,h) inside the tunnel and (i,j) leaving the tunnel. Figures (a,c,e,g,j)

show the camera recordings. Figures (b,d,f,h,j) show the radar detections.
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(a)

(b)

(c)

Figure 2.3: Multiple-target detection count variation for three different recordings

2.1.3 Single target detections

The single-target detection counts of three recordings are studied in Table 2.1 to see if

there is any pattern of increase in counts when the car is inside a tunnel. In the first

recording, the average number of single-target detections both inside and after leaving

the tunnel are comparable. For the second recording, the average is highest when before

the vehicle enters the tunnel and has decreased significantly inside the tunnel. There

is similarly no consistent pattern in the third recording. Hence, we conclude that the

variation in the single-target detection count cannot be used for tunnel detection.
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Table 2.1: Average Number of Single-Target Detections

Rec 1 Rec 2 Rec 3

Before Tunnel 24 44 34

Inside Tunnel 41 18 32

After Tunnel 43 − 45

2.1.4 Target height

Another parameter that showed some type of correlation with the presence of a tunnel

was the target height that we calculated using the elevation and radial range of these

detections. We plotted the sum of heights of the multiple-target detections per scan

against total number of scans for the above three recordings. It showed a similar variation

as observed for the detection count remaining significantly high inside the tunnel. Target

height was hence used as the second important parameter.

2.1.5 RCS

We also verified the possibility of using RCS as a parameter. Figure. 2.4a-c show the

average RCS variation for the three recordings discussed earlier. It can be seen that the

variations of RCS do not show any consistent pattern. Hence RCS was not considered.It

should be noted that the results included here are for only three recordings but have

been verified for others as well.

2.2 Formation of feature vectors

Consider a radar scenario presented in Figure.2.5a. The resulting multiple-target detec-

tion counts distribution for one FR scan is shown in Figure.2.5b. We map the multiple-

target detection count into a two-dimensional matrix. The size of the matrix is chosen

for optimal classification performance and is discussed in further chapters. The mapping

process to convert the multiple-target detection count to a nx × ny matrix is explained

in the following steps.

1. For each time frame, the lateral range of a multiple-target detection is shifted from

(−40, 40) m to (0, 80) m
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2. The longitudinal and lateral range axes are of size 80 × 250. The axes values are

scaled with fx and fy which are given in

fx =
250

nx

fy =
80

ny

3. Multiple-target detections are mapped to a particular cell of the matrix if the

corresponding scaled down range values lie within that cell. Each kth cell, thereby,

consists of nk number of multiple-target detections.

Target height parameters are also mapped in a similar manner to a similar sized two-

dimensional matrix and hk represents the sum of heights of all the multiple-target de-

tections lying in the kth cell. The matrices now represent two images which will be used

as input features for training the classifier discussed in the next chapter.

(a)

(b)

(c)

Figure 2.4: Average RCS variation of multiple-target detections for three different
recordings
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Figure 2.5: Schematic of transformation from actual scenario to the feature level

Next chapter discusses logistic regression and gradient descent methods.



Chapter 3

Logistic Regression

We identify the problem of tunnel detection as a binary classification problem where

we need to classify whether or not the ego vehicle is inside a tunnel. We use logistic

regression which is a simple and commonly used supervised learning algorithm for clas-

sification. Other algorithms like support vector machines and neural networks may be

considered in future.

For a binary classification problem, given a set of input values represented by a one

dimensional vector x = [x1, x2, ....xn], the predicted (or estimated) output represented

by ŷ should be either 0 or 1. While ‘0’ represents negative class, ‘1’ represents positive

class. ŷ will be predicted based on a mathematical function which maps the input vector

to the output [9]. This mathematical function is called a hypothesis function.

The general form of the hypothesis function is given as

hθ(x) = θ0 +

n∑
i=1

θixi (3.1)

where, θ = [θ0, θ1, ....θn] is called the learning parameter vector. For a given θ, the

hypothesis function hθ(x) tries to map the input variable to the output. Here, θ0 is

called the bias variable. For binary classification, hθ(x) is required to be modified such

that it satisfies 0 ≤ hθ(x) ≤ 1. Hence, (3.1) modifies as below

hθ(x) = g(θ0 +

n∑
i=1

θixi) (3.2)

g(z) =
1

1 + e−z
(3.3)

z = (θ0 +

n∑
i=1

θixi) (3.4)

12
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Here, g(z) represents a sigmoid function whose value lies between 0 and 1 for any value

of z. Figure. 3.1 shows a graphical plot of g(z). In vector form, z = x ∗ θT .

Figure 3.1: A typical graph of a sigmoid function

Thus hθ(x) gives the probability that the output is 1. For example, hθ(x) = 0.65 signifies

that the probability of output being 1 is 65%.

hθ(x) = P (y = 1|x; θ) = 1P (y = 0|x; θ) (3.5)

The output vector ŷ is now defined as

ŷ = 1, forhθ(x) ≥ 0.5 (3.6)

ŷ = 0, forhθ(x) < 0.5 (3.7)

where, hθ(x) = 0.5 is the decision threshold. The training data x is of size (m,n + 1),

where m is the size of the data set and n is the total number of features for one data

sample. An additional column is added with all values equals to 1 to compensate for

the bias term as mentioned earlier. Now, hθ(x) and ŷ are the hypothesis and output

vector respectively of size (m, 1). Similarly, the label vector y (ground truth) will also

be of size (m, 1).

3.1 Cost Function

The cost function, also called as loss function, is a measure of error incurred while

predicting the output using the hypothesis function. It needs to be optimized to obtain

a minimum value. For a single input data sample, we define our cost function as

Cost(hθ(x), y) = −log(hθ(x)) , if y = 1;
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Cost(hθ(x), y) = −log(1− hθ(x)) , if y = 0

Figure. 3.2(a,b) show the graphical plot for these two. This can be explained as follows.

When y = 1, hθ(x)) should also be closer to 1, thus keeping the cost to minimum. If

hθ(x) << 1 fory = 1, the error will be high. For y = 0, it is exactly opposite. When

combined together, an overall cost function J(θ) is obtained as

J(θ) = −y ∗ log(hθ(x))− (1− y) ∗ log(1− hθ(x)) (3.8)

Figure. 3.3 shows the graphical plot for the overall cost function J(θ). For m number

of input data samples (3.8) modifies to

J(θ) = − 1

m

m∑
j=1

(yj ∗ log(hθ(x
j)) + (1− yj) ∗ log(1− hθ(xj))) (3.9)

(a) (b)

Figure 3.2: Graphical plot for cost function for (a) y = 1, and (b) y = 0

Figure 3.3: Graphical plot for overall cost function
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3.2 Gradient Descent

Gradient descent (GD) is an optimization algorithm which is used to find the minimum

value of a function. Starting from a random point, it takes steps proportional to negative

of the approximate gradient of the function at the current point till the minimum value

is reached. A convex function is generally preferred which has a single minima, instead

of a non-convex function which might have a number of local minima. This is because,

for a non-convex function, the algorithm may get stuck on a local minima instead of

converging to a global minima.

In logistic regression for binary classification, GD serves two purposes. It optimizes the

cost function as given by (3.9) and estimates the best possible value of the learning

parameter vector which is initially set to 0. For an input data set x of size (m,n + 1),

GD algorithm updates the learning parameter vector θ until the minimum value of cost

function J(θ) is reached. It is represented in vector form as

Repeat until convergence:

θ := θ − α

m
∗ (xT ∗ (x ∗ θT − y)) (3.10)

1
m ∗ (xT ∗ (x ∗ θT − y) = ∆J(θ) = gradient ;

α = learning rate, m = number of input data samples

This algorithm is also called as batch GD where the batch size for each iteration is equal

to m. The value of the cost function after updating θ in each iteration is recorded. A

plot of the cost function against number of iterations is used to check whether or not the

function value is converging to a minimum. A very small value of α can make GD slow

whereas too high of a value can make it to overshoot or undershoot making it either slow

to converge to the minima or not converge at all even after many iterations. Another

variation is mini-batch GD in which instead of the whole input data, ‘b’ number of

samples are considered at each time for each iteration. The mini-batch size is b. It is

represented as

Repeat until convergence:

for (1 : b : m){θ := θ − α
b ∗ (xTb ∗ (xb ∗ θT − yb))}

Generally the values of b are taken as power of 2. Mini-batch GD requires lesser number

of iterations as compared to batch GD and α is also small. If the input data size is not

too large, mini-batch GD can perform better than batch GD. It is not preferred for large

data sets as it slows down the convergence.
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Due to varying range of input feature values, GD may oscillate unnecessarily as it de-

scends faster for small ranges and slower for large ranges. This can be overcome by nor-

malizing the feature values for entire data set and thus speed-up GD. This is achieved

as

x = x−µ
σ ; µ = mean , σ = standard deviation

Regularization is a measure to overcome the problem of over-fitting or high variance in

case of which, the classifier performs quite well for the training data but poorly for the

test data. Applying regularization modifies (3.9) to

J(θ) = − 1

m

m∑
j=1

(yj ∗ log(hθ(x
j)) + (1− yj) ∗ log(1− hθ(xj))) +

λ

2m
∗

n∑
i=1

θ2i (3.11)

and gradient ∆J(θ) is modified as

∆J(θ) = 1
m ∗ [(xT ∗ (x ∗ θT − y) + λθ]

Here, λ is the regularization parameter. If a certain feature value is causing the hypoth-

esis function to over fit, it’s effect is reduced by inflating the cost for the corresponding

weight (learning parameter) using regularization. As a result, the equivalent gradient

value will also increase, there by reducing the weight while updating it’s value in a GD

iteration. The bias term θ0 is not updated with regularization.

Parameters like gradient descent iterations, batch size, learning rate (α), regularization

factor (λ), etc. are called hyper-parameters. There is no fixed set of values of hyper-

parameters and they need to be tuned to optimize the output for a specific algorithm.

This is done by trying different set of values randomly and choosing the one which gives

the optimal result.

Next chapter discusses the simulation results.



Chapter 4

Simulation Results

We implemented logistic regression for detecting tunnels using the classifier model de-

fined earlier. The training set was generated by combining the data samples for three

different sensor recordings. The samples were labelled with a file that contained the

beginning and end time stamps for each tunnel. Different test sets were also generated

using the available data and labelled in a similar way. For each training and test sample,

we had two feature matrices obtained from multiple-target detection counts and target

heights. Each matrix was rolled out into a one dimensional vector and by combining

both, we obtained a single input feature vector of size (2(nx × ny)). Hence, for mtrain

training and mtest test samples, the corresponding data set size would be (mtrain, n+ 1)

and (mtest, n+ 1). An additional bias value equal to 1 was added in each feature vector.

4.1 Evaluation Metrics

Figure. 4.1 shows a confusion matrix for classification outcomes identified as true pos-

itives (TP), false positives (FP), false negatives (FN) and true negatives (TN) . These

are defined as follows:

• TP: Number of samples actually belonging to class 1 and predicted as class 1 by

the classifier.

• FP: Number of samples actually belonging to class 0 but predicted as class 1 by

the classifier.

• TN: Number of samples actually belonging to class 0 and predicted as class 0 by

the classifier.

17
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• FN: Number of samples actually belonging to class 1 but predicted as class 0 by

the classifier.

Based on these values, the performance of a classifier is then evaluated in terms of

different performance metrics as described below.

1. Accuracy: It refers to the total number of correct predictions out of the total

number of predictions made by the classifier.

Accuracy = TP+FP
TP+FP+FN+TN

Accuracy is a good measure when the data is balanced in terms of the classes,

i.e. data contains equal number of samples for each class. But in case of skewed

data, where samples of one class are more than the other, accuracy cannot alone

be counted upon. For example, in a binary classification problem, if the training

data set contains 98% of negative (class 0) samples and 2% of positive (class 1)

samples, a training accuracy as high as 98% can be achieved even if the classifier

model predicts all samples to be negatives. Performance in such cases is evaluated

with other metrics which are explained next.

2. Sensitivity: Also known as recall or true positive rate, it refers to the total

number of correct predictions out of the total actual positive.

Sensitivity =
TP

TP + FN
(4.1)

3. Specificity: Also known as true negative rate, it refers to the total number of

correct predictions out of the total actual negatives.

Specificity =
TN

TN + FP
(4.2)

4. Precision: It refers to the total number of correct predictions out of the total

positive predictions made by the classifier.

Precision =
TP

TP + FP
(4.3)

Sensitivity, specificity and precision should be high, ideally equal to 1, for an

efficient classifier.
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Figure 4.1: Confusion matrix for binary classification

4.1.1 Receiver operating characteristic curve

The receiver operating characteristic (ROC) curve is another way to examine the diag-

nostic ability of a classifier [10]. It is a graphical plot of sensitivity or true positive rate

(TPR) against the false positive rate (FPR) for different values of decision thresholds

varying between 0 and 1. FPR is also called as fall-out or probability of false alarm and

is given as:

FPR = 1 - Specificity = FP
TN+FP

Figure. 4.2 depicts ROC curves for different classifiers. For a perfect classifier the area

under the curve is equals to 1 and (0, 1) represents the best prediction [11]. In the ideal

condition, when the decision threshold is equals to 0, both TPR and FPR will be equal

to 1 as all the samples in the data set will be detected as positives. This is denoted by

(1, 1) in the graph. As the decision threshold is increased gradually, the FPR decreases

without affecting the TPR and finally both converge to 0 as the threshold becomes equal

to 1. The ROC curve of a good classifier should be as close to the ideal curve as possible

with the area under the curve closer to 1. In Figure. 4.2, the diagonal line is called as

the no-discrimination line representing a classifier that makes random predictions. In

this case, TPR and FPR are always equal for all the values of threshold and the area

under the curve is 0.5. A good classifier must provide an ROC curve that is above the

diagonal.



Simulation Results 20

Figure 4.2: ROC curve for different classifiers

4.2 Results

The simulations results presented here include the following:

1. Case 1: Performance comparison for two different feature matrix dimensions for

first test set.

2. Case 2: Effect of applying smoothing on the predicted output.

3. Case 3: Performance comparison for second test set before and after filtering the

height data with optimal parameters.

4.2.1 Effect of matrix size, regularization and batch size

In this subsection, we compare the classifier performance for the first recording test

with two different feature matrix dimensions: 5× 5 and 7× 4 respectively. Results were

first obtained using logistic regression (LR) with batch gradient descent (GD). Then the

exercise was repeated using regularization and mini-batch GD. The training data set

consists of 2443 samples and the test set of 743 samples. Table 4.1 shows the values of

the various hyper-parameters used with a matrix size of 5 × 5. Table 4.2 (a) compares

the metrics obtained for the test set for unregularized LR with batch and mini-batch

GD and regularized LR with batch GD. Table 4.3 (a) shows the confusion matrices for

these three cases. Except a slight reduction in accuracy, other metrics are almost same

for regularized LR with batch GD as compared to unregularized LR with batch GD.

Regularization does not improve the results here. Unregularized LR with mini-batch
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GD shows a slight improvement in terms of accuracy, specificity and precision as com-

pared to unregularized LR with batch GD. Figure. 4.3 shows the ground truth versus

estimated output for the test set obtained using unregularized LR with mini-batch GD.

The result plots for remaining two cases did not show many distinctions and hence are

not shown. Fluctuations can be noticed at the entrance and exit of the tunnel. This

might be attributed to the sudden increase in multiple-target detections as the vehicle

approaches the entrance and then decrease towards the exit as observed earlier.

Table 4.1: Hyper-parameter values for case 1

Hyper-Parameters Un-Reg/Batch GD Un-Reg/Mini-Batch GD Reg/Batch GD

Learning Rate (α) 0.1 0.01 0.1

No. of GD Iterations 2500 1500 2500

No. of Training Samples 2443 2443 2443

No. of Test Samples 743 743 743

Feature Matrix Dimension 5 x 5 5 x 5 5 x 5

Regularization Parameter (λ) - - 30

Mini-Batch Size - 64 -

Table 4.2: Performance metrics for test set in case 1

(a) Matrix dimension: 5x5

Metric (%) Un-Reg/Batch GD Un-Reg/Mini-Batch GD Reg/Batch GD

Accuracy 95 95.2 94.8

Sensitivity 87.7 87.3 87.2

Specificity 97.9 98.3 97.9

Precision 94.4 95.4 94.3

(b) Matrix dimension: 7x4

Metric (%) Un-Reg/Batch GD Reg/Batch GD Reg/Mini-Batch GD

Accuracy 94.7 95 95.6

Sensitivity 92 92 91.5

Specificity 95.8 96.4 97.2

Precision 89.8 91 92.8
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Table 4.3: Confusion matrices for test set in case 1

(a) Matrix dimension: 5x5

Un-Reg/Batch GD Un-Reg/Mini-Batch GD Reg/Batch GD

TP: 186 FP: 11 TP: 185 FP: 9 TP: 185 FP: 11

FN: 26 TN: 520 FN: 27 TN: 522 FN: 27 TN: 520

(b) Matrix dimension: 7x4

Un-Reg/Batch GD Reg/Batch GD Reg/Mini-Batch GD

TP: 195 FP: 22 TP: 195 FP: 19 TP: 194 FP: 15

FN: 17 TN: 509 FN: 17 TN: 512 FN: 18 TN: 516

For feature matrix size 7× 4, Table 4.2 (b) compares the metrics obtained using unreg-

ularized LR with batch and regularized LR with batch and mini-batch GD. Table 4.3

(b) shows the confusion matrices for these three cases. Accuracy for unregularized LR

with batch GD is slightly decreased to to 94.7% as compared to 5× 5 where it was 95%.

Though sensitivity increased from 87.7% to 92% due to decreased false negatives and

slightly increased true positives, false positives doubled to 22 which lead to decrease in

specificity and precision. Figure. 4.4(a) shows the fluctuations in the open space before

the vehicle’s entry in the tunnel. Applying regularization with regularizing parameter

value equals to 50 slightly improves the performance in terms of accuracy, specificity and

precision. Regularized LR with mini-batch GD with regularizing parameter value equal

to 5 gave the optimum result for this matrix size. Figure. 4.4(b,c) show the reduced

fluctuations in the predicted output for regularized LR with batch and mini-batch GD

respectively.

Figure 4.3: Estimated output v/s ground truth for first test set using unregularized
LR with mini-batch GD and feature matrix size 5x5
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(a)

(b)

(c)

Figure 4.4: Estimated output v/s ground truth for first test set with feature matrix
size 7x4 for (a) un-regularized LR with batch GD, (b) regularized LR with batch GD,

and (c) regularized LR with mini-batch GD

We tried using other feature matrix sizes like 5 × 4, 8 × 5 and 9 × 6, with different

combinations of hyper-parameter values. The optimum result was obtained with matrix

size 5×5 using unregularized LR with mini-batch GD. We concluded that increasing the

matrix size beyond a certain limit makes the distribution of matrix values more sparse

and this might be a reason of no improvements in the classifier performance.

4.2.1.1 ROC curve for optimal feature size

Figure. 4.5 shows the ROC curve generated using the training data with a feature

matrix size of 5× 5 and other parameters being same as discussed earlier (Table 4.1). A
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zoomed-in section shows the curve for unregularized LR and regularized LR with batch

GD lie below the curve for unregularized LR with mini-batch GD, signifying it’s better

performance over the other two.

Figure 4.5: ROC curve for optimal feature matrix size 5 × 5

4.2.2 Effect of smoothing

In order to overcome the fluctuations in the predicted output, we applied moving average

method of smoothing [12] (see Appendix A) on the predicted classification probability

before comparing it to the detection threshold. Table 4.4 (a) and (b) shows the perfor-

mance metrics and confusion matrices respectively for the first test set with the optimal

parameters (as discussed earlier), before and after smoothing. Though the metrics are

comparable, a smooth predicted output was obtained as shown in Figure. 4.6(b).

Table 4.4: Performance comparison for case 2

(a) Metrics

Metric (%) Before Smoothing After Smoothing

Accuracy 95.2 95.3

Sensitivity 87.3 88.7

Specificity 98.3 98

Precision 95.4 94.5

(b) Confusion matrices

Before Smoothing After Smoothing

TP: 185 FP: 9 TP: 188 FP: 11

FN: 27 TN: 522 FN: 24 TN: 520
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(a)

(b) After smoothing

Figure 4.6: Estimated output v/s ground truth (a) before smoothing, and (b) after
smoothing

4.2.3 Effect of target height

In this section, we compared the results for a second test before and after filtering target

height for the optimal parameter values as discussed in case 1. This test set consisted of

1038 samples. Here, filtering target height refers to considering detections with height

between 6 to 8 meters. The predicted output is a smoothed one. It can be seen in

Table 4.5 (a) and (b) that accuracy, specificity and precision are reduced slightly with

filtered height with an increase in the number of false positives. This can be improved

by applying regularization. We concluded that filtering the height did not contribute

much towards improving the performance.

Figure 4.7: Estimated output v/s ground truth compared with and without filtering
height
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Table 4.5: Performance comparison for case 3

(a) Metrics

Metric (%) Without Filtering Height After Filtering Height

Accuracy 94 93.7

Sensitivity 74.2 75

Specificity 99 98.4

Precision 95 92.3

(b) Confusion matrices

Without Filtering Height After Filtering Height

TP: 155 FP: 8 TP: 157 FP: 13

FN: 54 TN: 821 FN: 52 TN: 816



Chapter 5

Conclusion

In this work, we proposed a machine learning based method for detecting tunnels using

processed radar data. We determined that increased multiple-target detection counts

and target heights were the appropriate patterns for identifying the presence of tunnels.

We implemented logistic regression to model and train the classifier. We compared the

classification accuracy, precision, specificity and sensitivity for test sets with different

combinations of hyper-parameter values and feature matrix sizes. We showed that the

unregularized logistic regression with mini-batch gradient descent using a feature matrix

size of 5 × 5 provided the optimum results. Also, smoothing the predicted output helped

in reducing the fluctuations in the output.

5.1 Limitations

There are certain limitations in this work. Firstly, mapping a one dimensional parameter

into a two dimensional feature matrix results into values of many cells being zero leading

to sparse matrix. This limits the classifier’s performance. Second, the classification

relies on only two parameters - multiple target detections and target height. We need to

identify additional parameters to improve the performance. The target height parameter

is estimated from the sensor’s range and elevation. Since, the parameter is derived from

two other measurements, its error bounds are high. The availability of a sensor that

directly provides height information of a target would result in lower errors. The classifier

was unable to detect those tunnels that did not strongly reflect the radar signals possibly

due to their geometries or construction material. Lastly, the algorithm was unable to

detect multiple tunnels that were separated by short distances.

27



Appendix A

Moving Average Filter

A moving average filter smooths data by replacing each data point with the average of

the neighboring data points defined within the span [13]. It is ensured that span must

be odd and the data point to be smoothed must be at the center of the span. This

process is equivalent to low-pass filtering and the filter response is given as

ys(n) = 1
2N+1

∑N
k=−N y(n+ k)

where, ys(n) is the smoothed output value for nth data point, N = number of neighboring

data points on either side of the nth data point and 2N+1 is the span.

The span is adjusted for data points that cannot accommodate the specified number

of neighbors on either side. Since span cannot be defined for end points, they are not

smoothed.
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