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Abstract—Traditionally, point cloud representations or Doppler
spectrograms have been generated from short-range automotive radars
for dynamic object detection and classification. In this work, we
propose using inverse synthetic aperture radar (ISAR) images obtained
from range compensated turning targets for the classification of
different types of vehicles. We experimentally demonstrate that ISAR
images of automotive targets provide rich features such as the
dimensions, trajectory, and the number of wheels of the vehicles
for classification. Additionally, we present a simulation framework
for generating large volumes of realistic ISAR images of automotive
targets at millimeter-wave frequencies for training classifiers. The model
incorporates radar scattering phenomenology of commonly found vehicles
along with range-Doppler-based clutter and receiver noise. The model
is experimentally validated with measurement data gathered from
an automotive radar. The images from the simulation database are
subsequently classified using traditional machine learning techniques and
deep neural networks based on transfer learning. We show that the ISAR
images offer a classification accuracy above 90% and are robust to both
noise and clutter.

Index Terms—ISAR, classification, automotive radar, transfer learning,
radar database

I. INTRODUCTION

With the advent of advanced driver assistance systems (ADAS),
automotive radars are becoming increasingly common on cars for
improving road driving conditions. These radars are used for multiple
applications such as automatic cruise control, pedestrian detection,
cross-traffic alert, blind-spot detection, and parking assistance [1],
[2]. The main advantage of automotive radar over the camera for
object detection and classification is that the radar can be operated
in low light conditions, rain, and fog. Secondly, these sensors are
typically cheaper than cameras, and hence multiple of them can
be mounted around the periphery of the vehicle, usually behind
the bumpers. Finally, automotive radars operate at millimeter-wave
frequencies with high bandwidths and spatially large antenna arrays.
Hence, they offer an excellent range, Doppler, and azimuth resolution
[3]. Usually, in these systems, the raw radar data cube is processed to
provide a collection of point scatterers corresponding to both vehicles
and clutter with range, azimuth, elevation, and Doppler information.
Direct object detection and classification based on this type of data
can be challenging since it is difficult to correctly cluster the point
scatterers are belonging to the same object [4], [5]. Instead, radar
images / signatures directly processed from raw radar data provide
more effective features for automatic target recognition.

Classification of radar targets for a variety of applications has
been researched over the last few decades [6]–[12]. Many different
types of radar signatures have been studied. For example, radar
micro-Doppler spectrograms, which are the joint time-frequency
representations of time-domain narrowband radar data have proven to
provide excellent features for classification. They have been used for
distinguishing between different types of human activities [13]–[18];
armed and unarmed personnel [19]; ground vehicles and pedestrians
[20]–[22]; and different types of airborne targets such as unmanned
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aerial vehicles and birds [23], [24]. Range-Doppler plots generated
from broadband radar data have also served as excellent features
for target recognition [25]. Other works have used range-crossrange
images generated through synthetic aperture radar (SAR) imaging for
classification purposes [26]–[28]. However, SAR images are typically
more suited for classifying static targets since dynamic targets may
distort the radar images. The alternative is to use antenna array
processing for obtaining fine cross-range resolution. However, this
requires a large array with lots of antenna elements, and precise phase
synchronization across the multiple channel data [29]. A third method
for obtaining fine cross-range resolution is to use inverse synthetic
aperture radar (ISAR) processing of single-channel broadband data.

When a dynamic target travels along a complex trajectory, the
target undergoes a combination of translational and rotational motion.
If the translational motion of a target can be correctly estimated
and compensated, then the Doppler dimension can be mapped to
cross-range to obtain ISAR images [30]. The cross-range resolution
is inversely proportional to the extent of the target aspect presented
to the radar during the rotational motion and the coherent processing
time interval. ISAR images, generated from range-Doppler plots of
dynamic targets, have been extensively researched over the last two
decades - especially for the detection and classification of airborne
targets and ships [31]–[34]. In the automotive target scenario, vehicles
undergo complex turns, which can result in a large radar aspect.
Further, even while moving along a straight path, a slight offset
of the target vehicular trajectory from the ego radar, can result
in large radar aspects to get a fine cross-range resolution. Since
automotive short-range radars are characterized by large bandwidths
(above 2GHz) and high carrier frequencies (77GHz) that result
in fine range and Doppler (or cross-range) resolution, they are
particularly suited for generating high-resolution ISAR images of
vehicles. In ADAS systems, multiple auxiliary sensors (gyrometers,
accelerometers, other radars) are deployed on the ego vehicle.
Therefore, the translational motion compensation of both the ego
vehicle and target vehicle can usually be carried out without too much
difficulty. More recently, ISAR images of ground-based targets have
been generated using turntable data [35], ground-based platforms
[36], [37], and from airborne platforms [38]. However, these studies
have been restricted to very few targets. In our preliminary paper
in [39], we showcased how these images provide detailed insights
into the dimensions of vehicles and their trajectories. However, the
images were idealized and free of corruption from noise and ground
clutter.

Our contributions in this paper are as follows:
1) We provide a detailed simulation framework to generate

realistic ISAR images of automotive targets while incorporating
the effects of additive noise in the radar receiver and speckle
noise due to ground clutter effects. The main objective is
to provide a simulation framework for rapidly generating
large volumes of radar data without the cost and man-hours
involved in collecting measurement data. These data can be
used for training deep neural networks, which have recently
emerged as the algorithm of choice for classifying radar
images [14], [17], [27]. Secondly, the simulation framework

Authorized licensed use limited to: Indraprastha Institute of Information Technology. Downloaded on September 13,2022 at 11:49:57 UTC from IEEE Xplore.  Restrictions apply. 



2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2022.3146639, IEEE
Transactions on Intelligent Vehicles

2

can be integrated with software test beds for rapid prototype
development and validation. Finally, the simulation models can
be useful for understanding radar propagation phenomenology
in the environment and pinpointing cause and effect. We
have considered five commonly found targets - a full-size
car, a mid-size car, a four-wheel truck, a bicycle, and an
auto-rickshaw (tuk-tuk). We generate ISAR radar images of
these targets performing different types of turns (right, left,
and U-turn) as well as following a straight trajectory.

2) In real-world conditions, there can be considerable clutter
arising from the rough road surface at millimeter-wave
frequencies, which is proportional to the radar coverage area
[40]. Hence, this range-based clutter cross-section increases
with radar range. Further, Doppler-based clutter can arise due
to wind [41]. The combination of range and Doppler-based
clutter manifests as speckle noise and can significantly distort
the ISAR images. In this work, we have incorporated detailed
range-Doppler clutter as well as receiver noise in our radar
models to simulate realistic radar images. With this paper,
we release our database, consisting of over 30000 realistic
ISAR images, to the radar community at https://tinyurl.com/
msu6aj7y.

3) Third, we demonstrate that these images show detailed
information of the type of vehicle, its dimensions, the number
of wheels, and the trajectory followed by the vehicle. Further,
we have validated these simulated images with measurement
data gathered from Texas Instrument’s AWR 1843 77GHz
automotive radar.

4) Finally, most importantly, we demonstrate that the ISAR images
offer distinctive features for the classification of automotive
targets - compared to traditional features like point cloud
representations and Doppler spectrograms. To showcase the
effectiveness of ISAR features, we have considered both
traditional machine learning algorithms such as support vector
machine (SVM) [42] and random forest (RF) [43] as well as
Alexnet and Googlenet, which are two transfer learning based
deep neural networks [44]. Our results show that the ISAR
images are successfully classified by the machine learning
algorithms (with a precision and recall above 90%). The deep
neural networks outperform the traditional machine learning
algorithms and are robust to noise and clutter.

The paper is organized as follows. In the Section II , we present
the simulation methodology for modeling the scattered signal radar
signals from the automotive targets, as well as the noise and clutter
models. Then we describe the radar signal processing algorithms
for generating the ISAR images. In Section III, we present the
experimental set up for collecting measurement data for generating
ISAR images and present the measurement results. In Section IV,
we present the classification results of the five automotive targets
using four different machine learning-based algorithms - SVM, RF,
Alexnet, and Googlenet. Finally, we conclude the paper with our final
remarks in Section V.

II. SIMULATION METHODOLOGY

While several prior works have described simulation models of
pedestrians [45], [46], there are very few works that model automotive
vehicles along complex trajectories [47], [48]. These works have
confined their scope to simulating high range resolution profiles
and micro-Doppler spectrograms. In this section, we discuss the
simulation methodology for modeling the scattered radar signals from
five common automotive targets - bicycle, auto-rickshaw, mid-size
car, full-sized car, and truck. Then we describe how these models

can be integrated into the radar waveform to obtain ISAR images.
Finally, we present the method to incorporate noise and clutter in the
images.

A. Automotive Animation Model

We imported freely available three-dimensional (3D) computer
aided design (CAD) models1 of the automotive targets into Blender
software. Then, we rendered the metallic parts of the automotive into
triangular facets. An accurate rendering of the target capturing the
diversity of features on the chassis of the vehicle is realized by using
a large number of facets. In our work, the bicycle, and auto-rickshaw
are rendered with 3919 and 6949 facets, respectively; the mid-size
and full-size cars with 6905 and 19964 facets, respectively, while
the truck is rendered with 7206 facets as shown in Fig.1. We have

Fig. 1: Three-dimensional automotive targets with triangular facets used
for the simulation. (a) Auto-rickshaw (tuk-tuk), (b) full-sized car (c)
bicycle, (d) truck (e) mid-sized car

considered a four-way traffic junction, where lanes from the north
(N), south (S), east (E), and west (W) meet as shown in Fig2a. The

(a) (b)

Fig. 2: (a) Road geometry of four-way traffic junction. (b) Trajectories
undertaken by the automotive target in a four-way junction - (i) Right
turn, (ii) Left turn, (iii) U-turn and (iv) Straight through.

targets are assumed to stand on the XY ground plane which is aligned
with the N-S and E-W directions with the height along the Z-axis.
The ego radar is assumed to be static and fixed at (0, 0, 0.5)m along
the south road. A total of 16 different trajectories are possible at this
junction. They are the four right turns (S to E, E to N, N to W, W

1https://free3d.com/3d-models/
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to S), four left turns (S to W, W to N, N to E, E to S), four U-turns
(S to S, E to E, N to N, W to W) and four straight through (S to N,
N to S, W to E, E to W) as shown in Fig2b.

Next we describe the method for animating the vehicle along the
desired trajectory at a specified speed. We first identify the center of
the vehicle r⃗C and fix it at the starting position along a trajectory.
Then, we identify way points along the distance of the trajectory
such that the time taken for the vehicle’s center to travel between
any two way points is fixed (tf ) as shown in Fig.3a. The sampling

(a) (b)

Fig. 3: Animation model of trajectory: (a) Way points along the trajectory
that will be traversed by the center of the vehicle; (b) wheels rotational
angle calculation.

time instants corresponding to these way points are indicated by
f = 1, 2, · · · , F . Therefore, the center of the vehicle undergoes
translational displacement ∇⃗r[f ] = r⃗C [f ] − r⃗C [f − 1] at each f .
The target is composed of B triangular facets where the centroid
of each facet is r⃗b, b = 1 : B. Based on the rendering of the
vehicle, we obtain displacement vectors (∇⃗rb) of these centroids
from the center of the vehicle. These displacement vectors are fixed
with time since the chassis of the vehicle behaves as a rigid body
(excepting the wheels). The vehicle must undergo rotational motion
along with translational motion. This rotational motion at each frame
f is described in terms of the yaw (rotation angle about the Z axis,
θb[f ]) which is computed from

θ[f ] = arctan

(
yC [f ]− yC [f − 1]

xC [f ]− xC [f − 1]

)
. (1)

where yC and xC are y and x coordinates of centriod.
The position of the facet centroid on the chassis of the vehicle is

r⃗b[f ] =
(
Rθ[f ]r⃗b[f − 1]

)
+ ∇⃗r[f ], (2)

where Rθ is the Euler rotation matrix for a yaw of θ. In the case of
wheels, a facet centroid on the wheel undergoes additional rotation due
to the motion of the wheel. The angular displacement of the wheel is
proportional to the distance travelled by the wheel and the radius of the
wheel rw as shown in

α[f ] =
||∇⃗r[f ]||
rw

. (3)

The axis of this wheel rotation is obtained by the cross product of the
direction of translational displacement and the height axis. The total
displacement of a point on the wheel is

r⃗b[f ] =
(
Rα[f ]Rθ[f ]r⃗b[f − 1]

)
+ ∇⃗r[f ], (4)

where Rα is the Euler rotation matrix corresponding to a pitch angle
of α. The entire algorithm describing the animation motion modeling is
summarized in Algorithm.1.

B. Advanced Point Scatterer Signal Model
Automotive radars use linear frequency modulated (LFM) waveforms

for the detection and tracking of targets. We consider a radar transmitting
an LFM waveform,

Algorithm 1: Animation model of vehicle along desired
trajectory

Data: Fixed displacement vectors corresponding to facet
centroids on the chassis and wheels of the vehicle
(∇⃗rb, b = 1 : B)

1 with respect to the center of the vehicle (r⃗C ). Data: Specify
way point positions for center of vehicle along
trajectory: r⃗C [f ], f = 1 : F . Time duration between
two way points is fixed (tf ).

Result: Time-varying position coordinates of facet centroids
on vehicle (r⃗b[f ], b = 1 : B, f = 1 : F )

2 Initialization: Initialize positions of all the facet centroids
r⃗b[1] = r⃗C [1] + ∇⃗rb, b = 1 : B;

3 for f=2:F do
4 Compute displacement between two consecutive way

points ∇⃗r[f ] = r⃗C [f ]− r⃗C [f − 1];
5 Compute vehicle yaw rotation: θ[f ] = yC [f ]−yC [f−1]

xC [f ]−xC [f−1]
;

6 if Facet centroids on chassis then
7 Perform Euler rotation on facet centroids

r⃗b[f ] =
(
Rθ[f ]r⃗b[f − 1]

)
+ ∇⃗r[f ], b = 1 : B;

8 else if Facet centroids on wheels then
9 Compute rotation of wheel α[f ] = ||∇⃗r[f ]||

rw
where rw

is the radius of the wheel.;
10 Compute axis of wheel rotation which is

perpendicular to the plane defined by height axis and
vehicle translational motion direction.;

11 Perform Euler rotation on facet centroids on wheel
based on wheel rotation axis
r⃗b[f ] =

(
Rα[f ]Rθ[f ]r⃗b[f − 1]

)
+ ∇⃗r[f ], b = 1 : B

12 end
13 else
14 end
15 end

stx(τ) = rect

(
τ

TPRI

)
ej2πfcτ ejπKτ2

, (5)

with fc carrier frequency (and wavelength λc) and a chirp rate K. In
the above expression, rect(·) indicates that the transmitting signal is
defined for a pulse repetition interval of TPRI . We model the automotive
target as a collection of moving scattering centers, b = 1 : B, located
at the centroids of each of the facets on the vehicle. We only model the
reflections from the metallic surfaces of the automotive targets since the
non-metallic surfaces are known to be poor reflectors [49], [50]. We have
strictly considered scenarios where there are single targets in the images.
This is usually ensured in real world conditions through pre-processing
of raw radar data before classification. In real world scenarios, single
channel source separation is applied on multiple targets and returns from
each extended target with multiple scattering centers are isolated through
range gating and probabilistic association across the temporal history
of the data [30], [51], [52]. Since these algorithms are well known to
the research community, they are not included in the manuscript due
to space constraints. The time-varying range for each scattering center
is rb = Rb + vbt, where Rb is the starting distance from the radar.
The radar signal scattered back from a single point target is Doppler
shifted by fDb

= 2vb
λc

due to the target’s relative radial velocity (vb) with
respect to the radar. The received radar signal, after downconversion to
the baseband, is written in terms of slow time t and fast time, τ as

srxb (τ, t) = ab(t)rect

(
τ − τb

TPRI

)
e−j 4πfc

c
Rbe−j2πfDb

tejπK(τ−τb)
2
+ ν,

(6)

where τb(t) =
2rb(t)

c
is the time delay to the target. In the equation

above, ν denotes the additive noise that will be discussed in greater detail
in the following section. The strength of the received returns, denoted
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by ab, is obtained through the radar range equation by incorporating the
transmitted power (P tx), the gains of the transmitting (Gtx) and receiving
radar antennas (Grx), the radar cross-section of each scatterering center
(σb) and the distance of the point scatterer from the radar, as shown in

a2b =
P txGtxGrxσbλ

2
c

(4π)3r4b
. (7)

In (6) and (7), we have assumed stationary channel conditions and direct
path target returns without any type of multipath. The RCS of a flat
metallic triangular plate is a function of the radar aspect angle (θb), the
plate area (Ab), and long dimension (db), [53], as shown in Fig. 4, and
(8)

σb = η
4πA2

b cos
2 θb

λ2c

sin4
(

2π
λc
db sin θb

)
(

2π
λc
db sin θb

)4
. (8)

The aspect angle is computed from the dot product of the incident vector

Fig. 4: Radar cross section of flat metallic triangular plate

from the radar to the plate and the normal vector of the plate. Since
θb changes along the target trajectory, σb fluctuates. Not all scattering
centers may be visible to the radar. One method for incorporating
shadowing effects is to implement a shadowing algorithm on the radar
data. However, since these algorithms utilize ray tracing methods, they
are computationally expensive, especially for spatially large dynamic
objects such as automobiles at millimeter-wave frequencies. For example,
a ray-tracing algorithm for a 4mm wavelength would require the rays to
be spaced one-tenth wavelength apart and emanate from an aperture that
is at least the size of the largest automotive target that we consider. In
our case, that would correspond to a truck of 8.5× 2.6m× 5m. Further,
these computations would have to be repeated at the radar frame rate
of several giga-Hertz as opposed to the video frame rates of computer
animation algorithms typically used in vision. Instead, we opt for a low
complexity algorithm by introducing a Bernoulli’s random variable, η,
to model a 20% visibility of each point scatterer [48]. The detailed
comparison (accuracy and computational complexity) of the ray tracing
and probalistic method is presented in the appendix.

The radar data is sampled at a frequency of Fs = 1/δt, and the fast
time samples are numbered from 1 : N . Similarly, if we consider a pth

coherent processing interval (CPI) consisting of M PRIs, then the discrete
representation of (6) is

Srx
b [n,m] = ab[m]rect

[n− nb

N

]
e−j 4πfc

c
Rb

e−j2πmfDb
TPRI ejπKδt2(n−nb)

2
+ ν,

(9)

where nb is the integer rounded from τb(t)
δt

.
We process the received signal using stretch processing, a variation of

matched filtering, which is especially suited for low sampling frequencies
[54]. The maximum unambiguous range of the radar, Rmax, is equal
to cTPRI

2
. For every CPI, we consider a radar range span of interest,

R0 −
Rspan

2
: R0 +

Rspan

2
within Rmax where R0 is called the central

reference position (CRP). The time delay to the bth point scatterer can be
expressed as τb = τ0 + δτb(t) where τ0 = 2R0

c
corresponds to the time

delay to the CRP. Since, the target motion is known, the CRP is chosen to
correspond to the mean range to r⃗C in every CPI. In stretch processing,

the received signal is multiplied with e−jπKδt2(n−n0)
2

, where n0 is the
integer rounded from τ0

δt
over every PRI. Thus, we obtain

Srx
b [n,m] = ab[m]e−j 4πfc

c
Rbe−πKδ2t (n0−nb)

2
e−j2πmfDb

TPRI

e−j4πKδ2tn(n0−nb).
(10)

We carefully compensate for the translational motion of the vehicle, and
only consider the rotational motion of the point scatterer within a CPI.
Then, the first two exponential terms in (10) are constant phase terms
and are absorbed into the amplitude during further processing. The last
two terms show the variation of the two-dimensional (2D) signal over
slow and fast times, as shown in

Srx
b [m,n] = ab(·)e−j2πfDb

mTPRI e−j4πKδt2n(n0−nb). (11)

The fast time sampling frequency (Fs = 1/δt) is obtained from twice
the stretch bandwidth which is 2RspanK

c
where Rspan is much lower

than Rmax. Note that the stretch bandwidth is much lower than the
radar bandwidth (KTPRI = 2RmaxK

c
). Hence, the sampling frequency

requirements for stretch processing results in lower than that of the
ordinary matched filtering.

When the target is an extended target with multiple point scatterers
(B), then the received signal is obtained by the sum of the returns from
each scatterer.

Srx[m,n] =

B∑
b=1

Srx
b [m,n]. (12)

Here, we have ignored the multiple scattering between the different parts
of the target. The output is processed using 2D Fourier transform to obtain
range-Doppler ambiguity plots,

χ[fD, r] = DFT 2D{Srx[m,n]}, (13)

where the range dimension r spans N steps from R0 − Rspan

2
to

R0 +
Rspan

2
; and fD spans M steps from − 1

2TPRI
to 1

2TPRI
. The

2D plot can also be interpreted as a range-cross plot (χ[r, cr]) provided
an accurate estimate of the angular velocity (ω) of the target is available,
since translational motion has been compensated. We estimate ω for every
pth CPI by the change in yaw (Θ) of the vehicle as shown in

ω =
Θ[p]−Θ[p− 1]

TCPI
. (14)

Then the Doppler axis is converted to the cross-range axis by

cr[m] = fD[m]×
λc

2ω
, for m = 0 :M − 1. (15)

Depending on ω, the cross-range spans across images may vary even
when the pixel dimensions of the plot remain unchanged.

TABLE I: Automotive radar parameters for generating ISAR images

Parameters Values
Carrier frequency (2πfc) 77GHz

stretch Bandwidth ( 1
TSBW

) 8MHz
Sampling Frequency (Fs) 5MHz

Chirp rate (K) 60× 1012 Hz2
Chirp duration (TPRI ) 83.33µs

Coherent processing interval (TCPI ) 0.1s
Doppler resolution 10 Hz
Range resolution 0.075 m

Minimum cross-range resolution 0.19 m
Transmitted power (Pt) 25dBm

C. Noise and Range-Doppler Clutter Models
In this section, we discuss how we incorporated ground-based clutter

along the range and wind-based clutter along the Doppler dimensions
along with additive noise in the time-domain data.

Ground clutter: For a rough surface, the clutter cross-section is
proportional to the surface clutter coefficient, σ0, and the radar coverage
area. A stable component - due to static road conditions such as road
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material - and a fluctuating component due to wind contribute to σ0

[41], [55]:

σ0 = σ0
stable + σ0

fluctuating . (16)

We model σ0 as an exponential random variable with a mean of -15dB
which corresponds to asphalt at millimeter-wave frequencies [41], [56].
The radar coverage area is proportional to the antenna beamwidth (θBW ),
grazing angle (ψ), radar range resolution (δr = c

2KTPRI
) and range.

Therefore, σc is

σc = σ0rθBW δr secψ. (17)

This results in a ground clutter that is a function of range as shown in

C0[r] =
P txGtxGrxλ2cσ

0θBW δr secψ

(4π)2r3
. (18)

We have maintained the radar at the height of 0.5m above the ground
from which the grazing angle can be computed for every range r.

Doppler clutter: Based on [41], the power spectrum of the Doppler
clutter can be modeled as a low pass filter response. When combined
with the range related clutter, we obtain

C[fD, r] = C0[r]

[
1 +

(
fD

∆fD

)s]−1

. (19)

where s is a function of the average wind velocity (U ) as shown in

s =
2(U + 2)

(U + 1)

(
100

2πfc

)0.2

. (20)

In (19), ∆fD is the −3dB width of the spectrum and is given by

∆fD = 1.23

(
3.2

λc

)
U1.3. (21)

Based on local meteorological reports [57], U can vary from 0m/s to
10m/s. We consider four possible wind speeds (2.5, 5, 7.5, 10m/s) in our
simulations. Finally, we convert the power values obtained from (19) to
voltage values for each range-Doppler pixel (c[fD, r]). We multiply the
voltage with a phase modeled as a complex circularly symmetric random
variable (ϕ[fD, r]). This complex clutter signal (c[fD, r]exp(jϕ[fD, r]))
is then added to each pixel of the range-Doppler ISAR images χ[fD, r]
in (13). In this work, we use radar parameters that closely correspond to
an actual automotive radar and list them in Table.I.

Noise: While clutter was modeled as a speckle noise in the radar
images based on the above description, we modeled noise as an additive
white Gaussian N (0, Np) in the time-domain radar returns in (6). Based
on our radar range equation in (7), the minimum received signal at the
radar is −80 dBm. Based on the ratio between the minimum received
signal at the radar and the mean noise floor, we considered four different
signal to noise ratio (SNR) scenarios from −5dB to +10dB in our
simulations.

In the next section, we experimentally demonstrate the validity of our
simulation framework by comparing the results with those generated from
measurement data.

D. Database of Simulated Data
We present examples of ISAR images of each of the targets below Figs

5, 6, 7, 8, and 9. For all five automotive targets (bicycle, auto-rickshaw,
mid-size car, full-size car, and truck), we present two sets of results. The
figures on the left show the ISAR images corrupted by additive noise in
the receiver data due to receiver electronics. We present the set of images
corresponding to an SNR of +10dB. The figures on the right show the
ISAR images corrupted by range-Doppler clutter that give rise to speckle
noise. The clutter strength, in this scenario, is a function of the surface
reflection coefficient of the road and the wind speed. We present figures
corresponding to a wind speed of 2.5m/s. In all of the figures, each row
corresponds to images simulated for a distinct trajectory. The top row is
obtained when the vehicle moves along an almost straight trajectory from
N to S; the second row shows the trajectory of a target taking a left turn
from E to S; the third row shows the trajectory of a target taking a right
turn from S to E; while the fourth row shows the trajectory of a target

doing a U-turn from W to W. The range span (Y-axis) in all the figures
is 20m and is centered along the CRP corresponding to the specific CPI.
The cross-range span (X-axis) in all of the figures may vary from 10m to
20m and is centered at 0m. The cross-range axis correlates to the Doppler
axis of χ[fD, r]. The noisy images on the left are of a dynamic range of
50dB from −40dBm to −90dBm. While, the images on the right are
of a dynamic range of 80dB from −40dBm to −120dBm.

We, first, present the ISAR images of a bicycle in Fig.5. As mentioned
earlier, the images in Fig.5a correspond to the ISAR images corrupted
by noise, while the figures on the right correspond to the ISAR images
corrupted by range-Doppler based clutter. The bicycle is a spatially
narrow target and hence appears as a cluster of very closely spaced
scattering centers, almost like a single-point scatterer. The dimensions
of the target can be estimated from some of the images (for example,
sub-figure vi). The noisy images on the left show that at some range
positions, the target becomes difficult to discern due to low returns from
the bicycle, especially when it is far from the radar. This is because of the
low RCS of the bicycle. The cluttered images on the right show strong
clutter at DC (corresponding to 0m along the cross-range). The width
of the Doppler spectrum and the strength of the clutter returns change
depending on the wind speed. The bicycle can still be discerned in some
of the images along with the micro-Doppler tracks due to its wheels
(sub-figures xi and xiv in (b)). Note that our model does not consider the
motion of the bicycle handlebars or rider’s body, and hence those effects
cannot be observed in the images.

Next, we present the ISAR images of an auto-rickshaw in Fig.6. The
images show that the auto-rickshaw is a spatially larger target than the
bicycle. The shape of the vehicle is triangular in the top-view. In fact,
in some of the top-view images (sub-figure vi), we can clearly see the
dimensions of the vehicle. We also see considerable distortions along
the Doppler (cross-range) dimension due to the micro-Doppler from the
rotation of the wheels. Interestingly, in some images, we can see three
distinct micro-Doppler tracks from the three wheels (sub-figure xi in (b)).
On the top row, we observe that the longer dimension of the target’s top
view is oriented along the range dimension when the car moves from
N to S. In the second row, the target is first oriented laterally and then
turns length wise. This is because the target did a left turn from E to S.
Similarly, in the third row, the target was first oriented along the long
direction and then along the lateral direction as the target moved from S
to E. Finally, in the last row, the target is always along the lateral direction
since it does a U-turn from W to W. Therefore, the ISAR images offer
some indication of the type of trajectory undertaken by a target.

Figure.7 presents the results of the mid-size car. Since this is a larger
target than the auto-rickshaw, the returns are stronger. We are able to
see the top view of the target with all four sides. Again, we observe
some micro-Doppler based distortions along the cross-range due to the
micro-Doppler returns from the four wheels. Four distinct micro-Doppler
tracks are observed in the sub-figure x and xi in Fig.7b. Again, we observe
the longer dimension of the car oriented along the range dimension when
it is moving from either N to S or S to N. But the longer dimension of
the car is oriented along the lateral dimension when the car is moving
from E to W or vice versa.

The results in Fig.8, corresponding to the full-size car, look similar to
those from the mid-size car in Fig.7, except for the larger dimensions of
the car in the top-view. The dimensions of the full-size car are 5.7m ×
2.4m whereas those of the mid-size car were 4.4m × 1.7m. The larger
target also has stronger returns and is thus easily discerned in the images.
Again, we are able to observe four distinct micro-Doppler tracks from the
four wheels in some of the images (sub-figures ix-xii in Fig.8b). Also,
we are able to see the changes in the orientation of the images as the car
undergoes turns along its trajectory.

The largest automotive target that we have considered is the four wheel
truck, for which the results are presented in Fig.9. Due to its large size, the
top-view obtained from the ISAR images clearly presents the dimensions
of the target, which are 8.5m × 2.6m. We are also able to observe the
changes in the target orientation along the four distinct trajectories. The
micro-Doppler distortions are considerably greater in this case due to the
large wheel radii, and four micro-Doppler tracks in sub-figures xi in Fig.9
are well resolved in this case.
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(a) (b)

Fig. 5: ISAR images of a bicycle of (a) +10dB SNR, (b) with range-Doppler clutter with wind velocity 2.5 m/s at CPI frames corresponding to 1.5,
2.5, 3.5, 4.5s along following trajectories: (i-iv) straight path from north to south, (v-viii) left turn from east to south (ix-xii) right turn from west
to south and (xiii-xvi) U-turn from west to west. The range span is 20m while the cross-range span varies from 10m to 20m. The dynamic range
for SNR is 50dB (-40dBm to -90dBm) and for clutter 80dB (-40dBm to -120dBm).

(a) (b)

Fig. 6: ISAR images of an auto-rickshaw of (a) +10dB SNR (b) with range-Doppler clutter with wind velocity 2.5 m/s at CPI frames corresponding
to 1, 2, 3, 4s along following trajectories: (i-iv) straight path from north to south, (v-viii) left turn from east to south (ix-xii) right turn from south
to east and (xiii-xvi) U-turn from west to west. The range span is 20m while the cross-range span varies from 10m to 20m. The dynamic range for
SNR is 50dB (-40dBm to -90dBm) and for clutter 80dB (-40dBm to -120dBm).

We list the complete set of simulated ISAR images in Table.II. To

TABLE II: Simulated ISAR image database

Type of images Types of
Targets
(#)

Trajectories
(#)

Images
per
trajectories

Total
images
(#)

Ideal Images 5 16 45-49 3750
Noisy images of
SNR (+10,+5,0,-5
dB)

5 16 45-49 14976

Cluttered Images
with wind velocities
(2.5,5,7.5,10 m/s)

5 16 45-49 14976

summarize, we have considered five automotive targets - full-size car,
mid-size car, truck, auto-rickshaw, and bicycle. Each target undergoes
16 trajectories, and each trajectory is of 5 seconds duration. Since each
CPI is 0.1 seconds, we obtain between 45 and 49 images from each
trajectory. The resulting range and minimum cross-range resolution in
the ISAR images are 0.075× 0.19m respectively. We obtain 3750 clean
images that are free of noise and clutter. Then we corrupt these images
with additive white Gaussian noise in the time-domain to obtain noisy
images with SNR ranging from −5 to +10dB resulting in 14976 noisy
images. Similarly, we introduce range-Doppler clutter with four different
wind speeds (U ) ranging from 2.5 m/s to 10 m/s to obtain 14976 cluttered
images. With this paper, we publicly release this data set to the research
community at https://tinyurl.com/msu6aj7yh.
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(a) (b)

Fig. 7: ISAR images of mid-size car of (a) +10dB SNR, (b) with range-Doppler clutter with wind velocity 2.5 m/s at CPI frames corresponding to
1, 2, 3, 4s along following trajectories: (i-iv) straight path from north to south,(v-viii) left turn from east to south (ix-xii) right turn from south to
east and (xiii-xvi) U-turn from west to west. The range span is 20m while the cross-range span varies from 10m to 20m. The dynamic range for
SNR is 50dB (-40dBm to -90dBm) and for clutter 80dB (-40dBm to -120dBm).

(a) (b)

Fig. 8: ISAR images of full-size car of (a)+10dB SNR, (b) with range-Doppler clutter with wind velocity 2.5 m/s, at CPI frames corresponding to
1, 2, 3, 4s along following trajectories: (i-iv) straight path from north to south, (v-viii) left turn from east to south (ix-xii) right turn from south to
east and (xiii-xvi) U-turn from west to west. The range span is 20m while the cross-range span varies from 10m to 20m.The dynamic range for
SNR is 50dB (-40dBm to -90dBm) and for clutter 80dB (-40dBm to -120dBm).

III. MEASUREMENT DATA

The experimental set up for the measurements is shown in Fig.10. We
configured the TI AWR-1843 radar to operate in an ultra-short range radar
(USRR) mode and the corresponding parameters are listed in Table.I.
The transmitted power from the radar is 14dBm, and the noise floor of
the receiver is approximately -110dBm. We considered an auto-rickshaw
(Fig.10a) of 2.6m × 1.3m × 1.7m dimensions, a bicycle (Fig.10b) of
1.6m × 0.5m × 1.5m dimensions, and a mid-sized car - Honda Brio
(Fig.10c) of 3.6m × 1.7m × 1.5m dimensions for the measurement
data collection. Note that these targets resemble the ones used in the
simulations in terms of gross size. But the exact make and model are not
the same in both the scenarios. We could not carry out experiments with
the truck and large size car due to lack of availability of such targets in
our premises. The simulation scenario considers 16 possible trajectories.

Not all of these trajectories could be replicated in our institute premises.
Hence, we considered five trajectories as shown in Fig.11 - two straight
trajectories, two right turn trajectories, and a left turn trajectory. These
trajectories are similar to the trajectories chosen for the simulation data.
In the two straight trajectories, the vehicles move along a straight path
from left to right and right to left at an average speed of 15 kmph as
shown in Fig.11b. In the first right turn trajectory, vehicles first move
on the straight path and then execute a right turn in front of the radar,
whereas in the second right turn trajectory, the vehicles first move on the
straight path right to the radar and then execute a right turn as shown
in Fig.11c at an average speed of 15 kmph. In the left turn trajectory,
the vehicle first move on the straight path and then execute a left turn as
shown in Fig.11d at an average speed of 15 kmph.

We performed matched filtering along the fast time and Doppler
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(a) (b)

Fig. 9: ISAR images of truck of (a)+10dB SNR, (b) with range-Doppler clutter with wind velocity 2.5 m/s, at CPI frames corresponding to 1, 2,
3, 4s along following trajectories: (i-iv) straight path from north to south, (v-viii) left turn from east to south (ix-xii) right turn from south to east
and (xiii-xvi) U-turn from west to west. The range span is 20m while the cross-range span varies from 10m to 20m. The dynamic range for SNR
is 50dB (-40dBm to -90dBm) and for clutter 80dB (-40dBm to -120dBm).

Fig. 10: Experimental setup for gathering ISAR images of (a)
an auto-rickshaw undertaking a right turn trajectory, (b) a bicycle
undertaking a straight trajectory, (c) a small sized car undertaking a left
turn along their trajectory (d) Radar hardware.

Fig. 11: Experimental setup and trajectories for gathering ISAR images of
(a) two straight trajectories before the radar, (b) two right turn trajectories
before the radar, (c) a left turn trajectory before the radar.

processing along the slow time to obtain ISAR images of the target for
every CPI. We center the target in each measurement image by performing
coarse and fine range compensation based on [58]. The radar data is
carefully calibrated based on the radar range equation, and the dynamic
range of the images are fixed from -40dBm to -120dBm. The ISAR
images of a bicycle moving on left turn trajectory are shown in Fig.12
(i-iv) at CPI frame corresponding to 1,2,3,4 seconds. The Fig. 12(v-viii)
are ISAR images of auto-rickshaw moving along the straight trajectory
at CPI frame corresponding the 1,2,3,4 seconds. The Fig. 12(ix-xii) are
the ISAR images of the car executing the straight trajectory at the CPI
frame corresponding to 1,2,3,4 seconds. These images show the top-view
dimensions of the vehicle along the range and cross-range dimensions
from which we can infer the size of the vehicle. Interestingly, in the
measurement results, we can observe the back of the car, which is not
shadowed entirely by the front of the vehicles in some time intervals.
We are able to see the obscured part of the vehicle due to the inherent
advantages of ISAR processing, wherein reflections from different aspect
angles get captured due to the relative rotational motion of the vehicle
with respect to the radar. Another interesting observation is that the movie
of the ISAR images provides insights on how the car is turning based
on the orientation of the longer dimension of the car. In some frames,
we observe a large spread along the cross-range dimension due to the
micro-Dopplers arising due to the wheel motions. The strength of the
radar returns are also fairly comparable between the two sets of results.
We are also able to observe range based clutter in the measurement
results increasing with for higher values of range as observed in the
simulations. We also see Doppler-based clutter with the highest returns at
cross-range values close to 0m corresponding to static and low-frequency
clutter. Hence, there is, overall, a good qualitative agreement between
the measured and simulated images. Quantitative comparison is not made
since it was not possible to measure the exact clutter conditions in the real
data or replicate the identical targets and trajectories in the two scenarios.

IV. CLASSIFICATION RESULTS

In this section, we use classical machine learning techniques - support
vector machine (SVM) and random forests (RF) - and more recent deep
learning algorithms based on transfer learning - Alexnet and Googlenet
- for classifying the five automotive targets on the basis of their ISAR
images. We will examine the impact of noise and clutter and the volume
of test and training data on the classification performance. We will present
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Fig. 12: ((i-iv) ISAR images of bicycle along the left turn trajectory at CPI frame corresponding to 1,2,3,4 s, (v-viii) ISAR images of auto-rickshaw
along the straight trajectory at CPI frame corresponding to 1,2,3,4 s, and (ix-xii) ISAR images of car along the straight trajectory trajectory at CPI
frame CPI frame corresponding to 1,2,3,4 s from measurement data. Range axis spans from 0 to 20m while the cross range axis spans -15 to +15m.

the classification result using measurement data ISAR images as test data
for the classifier trained on the simulation data.

A. Effect of noise and clutter on classification performance
Based on Table.II, of the total volume of 14976 images for different

SNR values, 70% are used for training and 30% for testing in the case of
SVM and RF. In the case of Alexnet and Googlenet, we split the 30% data
that are not used for training between validation and testing. The resulting
classification accuracy for different SNR values is shown in Fig.13a. We
first observe that the classification accuracy for all algorithms is above
75% even for low SNR of −5dB. The accuracy for SVM and RF are
significantly poorer than those obtained from Alexnet and Googlenet at
low SNR (-5dB). The classification accuracy improves for all cases as the
SNR increases. The performances of Alexnet and Googlenet hold steady
(above 80% for Googlenet and 90% for Alexnet) for all cases.

We perform a similar study where we examine the effect of clutter
on the classification performance of the ISAR images. The clutter along
the range is modeled using a mean surface clutter coefficient. As the
range increases, the area of coverage increases resulting in greater clutter.
Wind gives rise to Doppler based clutter along the cross-range dimension.
Higher wind velocities (U ) give rise to greater clutter. Again, we have
assumed a 70-30 split between training and test data for SVM and RF
and a 70-15-15 split between training, validation, and test for Alexnet
and Googlenet. We show the variation of the classification accuracy
with respect to mean wind velocity in Fig.13b. We observe that the
classification performance for all the algorithms is fairly high (above
85%) even for high values of clutter arising from high wind speeds

(a) (b)

Fig. 13: Classification accuracy of automotive target ISAR images
using SVM, random Forest and transfer learning algorithms based on
Alexnet and Googlenet for (a) differing SNR values and (b) different
range-Doppler clutter values. 70% data used for training and remaining
data used for validation and testing.

(10m/s). The performance of the two transfer learning-based algorithms
(Alexnet and Googlenet) remains consistent even for the high values
of clutter. On the other hand, we observe a slight deterioration in the
performance of the two classical machine learning techniques with higher
clutter values. The results indicate that the ISAR images offer highly
discriminatory features for classification, even in the presence of high
noise and clutter.
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B. Effect of test and training percentages
In Table.III, we report the classification results for the four algorithms -

SVM, RF, Alexnet, and Googlenet - for different percentages of training,
testing, and validation data. For each case, we have performed a 5-fold
cross-validation. We first consider the data that are just corrupted by noise
(SNR varying from +10dB to −5dB). Then we repeat the tests on data
that are just corrupted by only clutter (wind velocities varying from 2.5
to 10m/s). Finally, we repeat the tests on data that are corrupted by both
noise and clutter. We observe that the performances for all the cases are
above 87%. Since, the training data is very large; the algorithms perform
well even when the training and testing are split evenly. We do not see a
significant improvement in the performance with an increase in training
data. The transfer learning algorithms like Alexnet and Googlenet perform
very well, even for low SNR and high clutter.

In the following section, we present the confusion matrices obtained
from the classification of data combining both noise and clutter. These
results are obtained using 70% training data. For each case, the rows
show the true labels of the data, while columns show the labels of the
predictions. We present three metrics with each confusion matrix. They
are precision, recall and the F1 score. Precision is defined as the ratio
of the true positives (the highlighted number along the diagonal) over
the sum of the true positives and false positives (column sum); while
recall is defined as the ratio of the true positives over the sum of the true
positives and false negatives (row sum). For each case, we also provide
the F1 score, which is defined as the harmonic mean of average precision
and average recall,

F1 = 2
avg.precision× avg.recall

avg.precision+ avg.recall
. (22)

The first confusion matrix is presented for the SVM in Table.IV. We
observe the least confusion for the truck. Due to its large dimensions
and strong returns, the truck is rarely mistaken for any of the other
targets or vice versa. Similarly, the bicycle is very small and hence
not easily confused with the other targets. However, due to its weak
returns and small size, sometimes, the bicycle is not easily discernible in
noisy images. The two cars are often confused by each other due to the
similarity in their dimensions, the number of wheels, and their strength of
returns. The mid-size car, especially, has the lowest precision and recall
because it is most similar to both the full-size car and the auto-rickshaw.
The F1 score for SVM is 88.6%.

We observe a similar result for the RF classifier in the second matrix
in Table.IV. Again, the best precision and recall are observed for the
large truck and the small bicycle. The results of the bicycle are slightly
worse than the truck because of its weak returns, which get affected when
the noise floor is high. Again, the two cars are confused by each other.
However, this time, the results for the full-size car have significantly
improved while those of the mid-size car have only slightly improved.
There is a noticeable improvement in the performance of the Alexnet
classifier, compared to the traditional machine learning algorithms for
all cases, as reported in the third matrix in Table.IV. Here, both the
precision and recall for all the cases are above 95%. Thus the two cars
are no longer significantly confused by each other. The confusion between
the auto-rickshaw and mid-size car has also substantially decreased. The
same improvement is also observed for the Googlenet classifier as seen
in the fourth matrix in Table.IV. Again, the accuracy is above 95% for
all five cases, both precision and recall. The F1 scores for RF, Alexnet,
and Googlenet are 92%, 98.1%, and 97.6%, respectively. Note that in all
of the cases discussed above, we use only a single target instance per
class. The limitation is due to the limited availability of open data of
computer animated models of vehicles provided by their manufacturers.
The diversity is incorporated by varying the trajectories, speeds, noise
and clutter conditions in the radar data. More robust classification tests
with multiple instances from the same class will be presented in future
studies.

C. Testing measured data with classifiers trained with simulation
data

We present the classification results of two classifiers - SVM based
on classical machine learning and Alexnet transfer learning-based deep

learning technique. Both classifiers are trained on simulation data. We
use 99 images for each of the three automotive targets - bicycle,
auto-rickshaw and medium-sized car - as test images for the classifier
performance evaluation. In Table.V we present confusion matrices for
both the classifiers. For the SVM classifier, we observe that the least
confusion is for the bicycle because it is smaller (in terms of spatial
extent) than the other targets. Confusion arises between the car and
auto-rickshaw because of their comparable sizes. The performance of
the Alexnet classifier is better than the SVM classifier and the confusion
between the auto-rickshaw and the mid-size car is reduced. The F1 scores
for SVM and Alexnet are 75.3 %, and 94.2% respectively. The results
indicate that the simulated ISAR images are of high fidelity and can be
used to train classifiers that can subsequently be used on real test data.

V. CONCLUSION

We have demonstrated an automotive radar simulation framework that
incorporates radar scattering phenomenology of commonly found road
vehicles as well as range-based surface clutter and Doppler-based wind
clutter and additive receiver noise. Using this simulation framework, we
have demonstrated that high-resolution ISAR radar images, characterized
by the fine range and cross-range resolution of dynamic automotive
targets, can be generated with millimeter-wave automotive radars. A
large database of over 30000 images has been publicly released to the
radar community. The simulation framework has been verified through
experimental data gathered with a real automotive millimeter-wave radar
from Texas Instruments. These images provide meaningful information
about the dimensions of the vehicle along the top-view as well as the
number of wheels and the trajectory undertaken by the vehicle in the
case of larger vehicles such as auto-rickshaws, cars, and trucks. Smaller
targets such as bicycles, on the other hand, more closely resemble
single-point scatterers. These images indicate the robustness of ISAR
images as automotive target classification features for both traditional
machine learning techniques as well as the more recent deep neural
networks.Due to restrictions in the data collection facilities within the
institute premises, we have limited our data collection to single target
instances of each target class. This may be satisfactory in the cases of
auto-rickshaw where the models and makes are fairly standard. However,
in other types of vehicles, there may be greater diversity in each target
class. The testing of the classifiers on multiple instances of the same
target class will form the focus of future works.

Also, note that the specific problem addressed in the paper falls in the
category of supervised learning - where the classifiers are trained with
data from specific targets and tested with data from the same set of targets.
In real world scenarios - especially in automotive radar settings - we may
encounter new targets that may have previously not been seen during
training. Such problems would fall under the category of unsupervised
learning. The exploration of new and better algorithms for handling the
unknown radar data will form the basis of our future work.

VI. APPENDIX

A. Study of effects of shadowing on radar signatures
In our simulation model, we resolve the target into triangular facets

and identify a scattering center at the centroid of each of the facets.
Then we sum the returns from all the facets to compute the time-domain
radar returns. Naturally, some of these facets would not be visible to
the radar due to shadowing. The visibility of a facet can be determined
through ray tracing. However, the process is computationally complex
and scales both with the carrier frequency and sampling frequency of
the radar data. To compare the computational complexity, the ray tracing
algorithm (based on the surface normals of the facets) was implemented
on a Intel(R) Xeon(R) CPU E5-2620 V3 processor running at 2.40 GHz
using 16 GB of RAM. The duration of data collection for a single
frame (shown in Fig.14(vi)) was 179.33 minutes. The computation time
of ray tracing algorithm using advanced GPU reduces significantly, but
the cost of the system increases which makes the technique challenging
for generating large volumes of data [45]. Instead, we incorporate
a Bernoulli’s random variable (η) to account for the visibility. The
computational time for generating the ISAR image using the probabilistic
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Classifier Training (%) Testing (%) Validation (%) SNR Range-Doppler Clutter Combined

SVM
70 30 - 92.4 93.8 88.6
60 40 - 92.2 93.7 88.1
50 50 - 92.3 93.3 87.7

Random
Forest

70 30 - 90.9 93.3 91.9
60 40 - 90.6 93.2 91.9
50 50 - 90.9 92 90.8

Alexnet
70 15 15 96.7 99.9 98.1
60 20 20 96.4 99.4 98.1
50 25 25 95.5 97.7 97.3

Googlenet
70 15 15 95.9 99.2 97.6
60 20 20 94.7 99.2 97.3
50 25 25 94.4 98.6 97.2

TABLE III: Classification of ISAR images using classical machine learning algorithms - SVM and random forest, and deep learning based
algorithms - Alexnet and Googlenet

SVM Predicted Labels
Vehicle Auto-rickshaw Bicycle Full size car Mid size car Truck Recall

True
Labels

Auto-rickshaw 1655 3 41 96 2 92.1
Bicycle 24 1687 17 72 3 93.6

Full size car 48 39 1478 193 34 82.5
Mid size car 111 112 146 1463 2 79.8

Truck 14 2 56 15 1673 95.1
Precision 89.4 91.5 85.0 79.6 97.6

RF Predicted Labels
Vehicle Auto-rickshaw Bicycle Full size car Mid size car Truck Recall

True
Labels

Auto-rickshaw 1674 14 13 96 0 93.2
Bicycle 4 1723 11 63 2 95.6

Full size car 29 34 1577 145 7 88.0
Mid size car 65 130 67 1570 2 85.6

Truck 3 4 24 18 1711 97.2
Precision 94.3 90.4 93.2 83.0 99.4

Alexnet Predicted Labels
Vehicle Auto-rickshaw Bicycle Full size car Mid size car Truck Recall

True
Labels

Auto-rickshaw 895 1 0 2 0 99.7
Bicycle 0 897 1 1 0 99.8

Full size car 3 1 876 14 5 97.4
Mid size car 5 40 5 849 0 94.4

Truck 2 0 4 0 893 99.3
Precision 98.9 95.5 98.9 98.0 99.4

Googlenet Predicted Labels
Vehicle Auto-rickshaw Bicycle Full size car Mid size car Truck Recall

True
Labels

Auto-rickshaw 881 0 8 7 2 98.1
Bicycle 0 890 0 9 0 99.0

Full size car 0 3 863 32 1 96.0
Mid size car 0 37 2 860 0 95.7

Truck 0 0 8 1 891 99.0
Precision 100 95.7 98.0 94.6 99.7

TABLE IV: Confusion matrices from SVM, RF, Alexnet and GoogleNet classifiers based on 70% training, 15% validation and 15% test
data.

SVM Predicted Labels
Vehicle Auto-rickshaw Bicycle Full size car Mid size car Truck Recall

True
Labels

Auto-rickshaw 76 22 0 2 0 76.0
Bicycle 4 92 0 4 0 93.9

Full size car 0 0 0 0 0 -
Mid size car 22 25 1 50 2 51.0

Truck 0 0 0 0 0 -
Precision 75.5 66.2 - 89.3 -

Alexnet Predicted Labels
Vehicle Auto-rickshaw Bicycle Full size car Mid size car Truck Recall

True
Labels

Auto-rickshaw 80 0 0 18 1 80.8
Bicycle 0 99 0 0 0 100

Full size car 0 0 0 0 0 -
Mid size car 0 0 0 99 0 100

Truck 0 0 0 0 0 -
Precision 100 100 - 84.6 -

TABLE V: Confusion matrices from SVM and Alexnet and GoogleNet classifiers, trained with simulation data and test with measured data.
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method was a few seconds. To study the effectiveness/accuracy of this
probabilistic approach, we compare the ISAR signature results with that
obtained from ray tracing in Fig.14. The first five subfigures show the

Fig. 14: (i-v) ISAR images of auto-rickshaw for the same CPI frame
using Bernoulli’s random variable with visibility of 60 %, 50%, 40 %,
30%, 20 % respectively. (vi) is the ray tracing algorithm ISAR images
of auto rickshaw for the same CPI frame. The range axis spans from 0
to 20m while the cross-range axis spans -15 to +15m.

ISAR images of the auto-rickshaw with visibility of η fixed at 60%, 50%,
40%, 30%, and 20% respectively, and (vi) is the ISAR image of the same
frame using ray tracing. We observe in the result from ray tracing, that the
nearer portions of the target are more distinctive than the distant portions
though they are somewhat visible. Visually, the image with 20% visibility
resembles the ray tracing result most closely. Quantitatively, we compare
the results using two metrics - the structural similarity index measure
(SSIM) and the normalized mean square error (NMSE) - and present it in
Table.VI. The SSIM compares gross features like luminosity and contrast
between two images while NMSE does pixel-wise comparison. The table

TABLE VI: Structural similarity index measure (SSIM) in ISAR
images generated using ray tracing and Bernoulli random variable

% of facets visible SSIM NSME
60 1 0.8636
50 1 0.4470
40 1 0.4337
30 1 0.3465
20 1 0.3411

shows that the SSIM is high for all five cases but the NMSE is lowest
for a visibility of 20%. Further, in the ISAR images generated using
the measurement data in Fig.12, we observe that some of the obscured
parts of the vehicle are not fully shadowed. Due to these reasons, we use
the approximate and less computationally expensive probabilistic method,
with a visibility coefficient of 20%, to account for the shadowing effect
in place of the ray tracing algorithm.
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