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Abstract: Simulation of radar cross-sections of pedestrians at automotive radar frequencies forms a key tool for software
verification test beds for advanced driver assistance systems. Two commonly used simulation methods are the computationally
simple scattering centre model of dynamic humans and the shooting and bouncing ray technique based on geometric optics.
The latter technique is more accurate but computationally complex. Hence, it is usually used only for modelling scattered returns
of still human poses. In this work, the authors combine the two methods in a linear regression framework to accurately estimate
the scattering coefficients or reflectivities of point scatterers in a realistic automotive radar signal model which they subsequently
use to simulate range-time, Doppler-time and range-Doppler radar signatures. The simulated signatures show a normalised
mean square error <10% and a structural similarity >81% with respect to measurement results generated with an automotive
radar at 77 GHz.

 Nomenclature
f c carrier frequency
γ chirp factor
ϕi, ϕs incident, scattering angle
θb inclination of bth ellipsoid
τ, n = 1: N fast time, fast time samples
t, p = 1:P slow time, slow time samples
f s = 1/Ts sampling frequency
Tupchirp up chirp duration
TPRI PRI
TCPI CPI
Tshort M PRIs
Tlong L CPIs
1/Tf, f = 1:F video Frame rate, frame numbers
σ RCS
ϵ′ − jϵ′′ dielectric constant, loss tangent
Δr, g = − (N /2): (N /2) − 1 range resolution, range samples
Δ f D, d = − P/2 : P/2 − 1 Doppler resolution, Doppler

samples
BW radar bandwidth
x, y continuous transmitted and

received signals
ab, b = 1:B reflectivity of bth scattering centre
rb, b = 1:B range of bth scattering centre
Rb, b = 1:B radius of bth ellipsoid
Hb, b = 1:B length of bth ellipsoid
Φ phase matrix based on point

scatterers range
A amplitude matrix to be estimated
Ψ RCS matrix from ray tracing
Y two-dimensional radar data (fast

time, slow time)
H1D, H2D 1D, 2D Window function
χ~RD simulated range-Doppler profile
χ~RT simulated range-time profile
χ~DT simulated Doppler-time profile

χ RT measured range-time profile
χ DT measured Doppler-time profile
χ RD measured range-Doppler profile

1 Introduction
Currently, ∼1.35 million road fatalities occur every year in the
world [1]. Pedestrians – especially children, senior citizens and
those with disabilities – are among the most vulnerable road users
[2]. Recently, there has been significant research focus on
developing advanced driver assistance systems (ADAS) for
improving driving conditions and reducing road fatalities.
Pedestrian detection, one of the key objectives of ADAS, has been
researched with both automotive cameras [3, 4] and radars [5, 6].
Camera images offer key features – in the form of shapes, sizes and
texture cues – for enabling automatic detection and recognition.
However, the performance of the camera is affected by light and
visibility conditions. Automotive radars, unlike cameras, can
operate continuously, under low visibility conditions and, in some
cases, in non-line-of-sight conditions as well. Radars are, however,
characterised by limited angular resolution. Recently, radars have
been researched for their pedestrian detection capability. The
swinging motions of a pedestrian's arms and legs, while walking,
give rise to distinctive Doppler radar signatures [7–9]. These
micro-Doppler signals are different from those generated by other
dynamic bodies on the road such as bicycles and cars and hence
can be used for automatic target recognition [10–14].

The performances of these algorithms rely on the availability of
large training databases gathered in a variety of scenarios. They
must comprise of data from pedestrians of different ages, heights
and girth; performing different activities and moving at different
orientations with respect to the radar. There are two methods of
generating the training data. One method is to collect the data from
real pedestrians using actual automotive radar sensors. The
advantage is that the training data is real and can be gathered both
in laboratory conditions and during test drives. However, the
disadvantage is that the database must be updated based on
hardware modifications to the sensor or due to software changes in
signal processing. Second, the data may be corrupted by the
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presence of clutter from the local environment (both static and
dynamic) and limitations of the sensor. Labelling of radar
measurement data gathered over long test drives also requires
painstaking efforts. Finally, pedestrians are dielectric bodies of
much smaller radar cross-section (RCS) than other road targets and
are unpredictable in terms of motion and posture. The alternative is
to simulate the radar signatures [15–17]. The advantage is that the
simulated radar signatures can be rapidly generated for a variety of
sensor parameters and target scenarios. Also, the simulations can
be easily integrated with the radar test bed and signal processing
platforms for rapid prototyping and validations. Finally, since the
simulated data may be made free of channel artifacts such as
clutter, the simulation results may facilitate identifying cause and
effect of the underlying radar phenomenology.

Simulations of radar micro-Doppler signatures have been
extensively researched over the last decade. The animation models
of human motions have included simple pendulum models of the
legs [18, 19]; analytical models of constant velocity walking
motion derived from bio-mechanical experiments [20]; and
computer animation models for describing more complex human
motions [21–25]. The motion models are subsequently combined
with electromagnetic models of radar scattering off humans. Full-
wave electromagnetic solvers yield very accurate predictions of
RCSs. However, they are not used for modelling humans due to the
considerable computational complexity (in terms of time and
memory) in modelling three-dimensional (3D) spatially large
dielectric bodies at automotive radar frequencies (24 and 77 GHz).
Further, humans are dynamic and have a distinct pose and posture
during each instant of any motion such as walking. A slightly less
computationally expensive alternative is based on the shooting and
bouncing rays and geometric optics and has been used for
predicting the RCS of still humans at X-band and Ku-band
frequencies [26–28]. However, the technique still remains
computationally expensive and cannot be used to generate radar
data at the pulse repetition frequencies typically used in automotive
radars. Hence, ray-tracing results cannot be directly used for
generating radar signatures – such as high range resolution profiles
or Doppler-time spectrograms of humans – which provide key
information for automatic target recognition. A third technique
based on the point scattering centre model has been widely adopted
for obtaining radar signatures of humans due to its low
computational complexity [16, 21, 29, 30]. Here the human is
modelled as an extended target with multiple point scatterers. The
scattering coefficient of each point scatterer is determined from an
analytical expression for RCS of a primitive shape resembling the
human body part corresponding to the point scatterer. The time-
varying positions of the point scatterers are obtained from
computer animation data. The resulting radar signatures have
shown an excellent correlation in terms of their micro-Doppler and
micro-range features to the signatures derived from real
measurement data. However, the method is very inaccurate in
estimating the RCS magnitude due to the approximate nature of the
primitive-based model and because the model does not include the
effects of shadowing and multipath interactions between the
different body parts. More recently, machine learning methods –
specifically generative adversarial networks termed GAN – have
been used to generate Doppler-time radar signatures of humans
from training measurement data [31, 32]. Again, the method has
been excellent in capturing the micro-Doppler features of the limb
motions as opposed to the RCS values. The accurate estimation of
RCS is, however, important for the implementation of radar
detectors for generating receiver operating curves.

In this work, we propose a method for accurately predicting the
RCS of pedestrians by combining electromagnetic ray tracing with
the point scatterer model. Highly accurate estimates of RCS of the
human are generated at the video frame rate using the ray-tracing
technique. The reflectivities of the point scatterer human model are
then estimated from the ray-tracing RCS values using linear
regression. These reflectivities are subsequently integrated with the
scattering centre model to generate the RCS at high radar sampling
frequencies. Our method is founded on the assumption that since
humans are slow moving targets, their scattering coefficients
fluctuate slowly across multiple radar coherent processing intervals

(CPIs) while the positions of the point scatterers change rapidly
across multiple pulse repetition intervals (PRIs). The proposed
method, thereby, combines the advantages of high accuracy of ray
tracing with the computational performance of scattering centre
modelling. We derive three types of radar signatures – high range
resolution profile, Doppler-time spectrogram and range–Doppler
ambiguity diagram from the simulated data. We compare the
signatures with similar signatures derived from measurement radar
data at 77 GHz. Our results show a low normalised mean square
error (<10%) and high structural similarity (>81%) between the
measured and simulated radar signatures. We also present
calibrated monostatic and bistatic RCS of humans at multiple
aspect angles and polarisations for both the automotive radar
frequencies (24 and 77 GHz).

The paper is organised as follows. In the following section, we
present the simulation methodology for hybridising the swift point
scatterer modelling technique with the accurate but
computationally heavy ray-tracing method. In Section 3.1 we
describe the experimental set up for jointly collecting radar
measurement data and motion capture (MoCap) data. We present
the time-varying RCS of the human for different polarisations at
77 GHz in Section 3.2. Then, we discuss the choice of parameters
used for simulating the target model in Section 3.3. Finally, we
present the simulated radar signatures of the pedestrian and provide
quantitative comparison with measurement results in Section 3.4.
We conclude our paper in Section 4. Appendix provides additional
results at 24 GHz and insights on the computational complexity.

Notation: We use the following conventions in our notations.
Scalar variables are indicated by lowercase italic letters; vectors
and matrices are indicated by bold italic letters.

2 Simulation methodology
The objective of the proposed work is to simulate the radar
scattered signal of dynamic humans in order to generate radar
signatures such as range–time, Doppler–time and range–Doppler
ambiguity plots. For our method, we rely on the availability of
MoCap data of a dynamic human motion at video frame rate
(1/Tf). We begin with a stick figure animated model of human
motion obtained from MoCap technology as shown in Fig. 1. Each
frame of MoCap data is exported to an animation software, such as
Poser Pro from Smith Micro Software [24]. Here the stick figure is
embodied using one of the in-built libraries of an anatomically
accurate human body. The human body is then rendered into a 3D
poly-mesh figure composed of triangular facets of suitable
resolution [33]. We consider the human body standing on an x - y
ground plane with the height along the positive z axis. We adapted
the fairly standard shooting and bouncing ray technique proposed
in [34] on the poly-mesh human data for RCS estimation for
different polarisations and aspect angles [26, 27]. In this technique,
we consider a set of parallel, closely spaced illumination rays
emanating from an incident plane at an incident angle ϕi. Based on
the interaction between the incident rays and the mesh triangles on
the human body, we compute the scattered electric field along the
direction of ϕs. While there are several commercially available
electromagnetic solvers that carry out ray tracing, we developed
our solver in-house in order to customise it for speed and
efficiency. The human body is a complex dielectric medium of
skin, tissues and bone. However, at high frequencies (24 and 77 
GHz), there is little penetration through the skin. Therefore, we
model the human body as a single layer dielectric with relative
permeability ϵ′r( f c) = ϵr( f c) + (σc( f c)/ j2π f cϵ0). The dielectric
constant and conductivity are ϵr = 6.63 and σc = 38.1 S/m at 77 
GHz [35] and ϵr = 50 and σc = 1 S/m at 24 GHz [26, 28]. The
scattered signal strength from the human is determined by the
reflection coefficient of the dielectric surface. We estimate four
types of RCS. They are the co-polarised horizontal (σhh) and
vertical RCS (σvv) as well as the cross-polarised RCS (σhv and σvh)
at 1/Tf. Based on the incident and scattered angles, ϕi and ϕs, we
compute the bistatic RCS for different types of polarisations. When
ϕs = ϕi, the RCS corresponds to the monostatic case. In the
following Section 2.1, we present our proposed method to use the
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ray-tracing results to estimate scattering centre coefficients.
Subsequently, we use these coefficients in a point scatterer model
to generate scattered signals at suitable radar sampling frequencies.

2.1 Proposed method: estimation of scattering coefficients of
point scatterer model using RCS from ray tracing

MoCap data describe the human posture for every frame at a video
frame rate (30/48/60 Hz). The ray-tracing method provides
accurate estimates of the RCS of the whole human body at each of
these frames. Since the technique is computationally expensive, it
cannot be used to generate radar data at high radar sampling
frequencies of the order of GHz. Hence, ray-tracing results cannot
be directly used for generating time-varying range–Doppler
ambiguity plots of humans. In this section, we propose a method to
obtain the radar signatures by hybridising the ray-tracing results
and the scattering centre model using the MoCap data.

We begin by assuming that a monostatic radar is located at the
origin. We model the radar transmit waveform as a frequency
modulated continuous waveform (FMCW) of centre carrier
frequency f c, radar bandwidth BW  and chirp factor
γ = BW/Tupchirp  as shown in Fig. 2. The transmit signal, xp(τ),

over a single pth PRI, TPRI, is given by

xp(τ) = rect τ
TPRI

ej(2π f cτ + πγτ2), (1)

where

rect τ
TPRI

=
1, 0 ≤ τ ≤ Tupchirp

0, Tupchirp < τ < TPRI
. (2)

The interval between the up chirp duration Tupchirp and TPRI may be
regarded as dead time. We assume that the transmitted waveform
spans Tlong duration consisting of L CPIs each of P PRIs. The radar

signal falls upon a dynamic target of B point scatterers with
scattering coefficients or reflectivities, {ab, b = 1:B}. These are
assumed to be constant over the radar bandwidth and over the
duration of Tlong. If the time-varying radial distance of each bth

point scatterer with respect to the radar is rb(t), then the
approximate baseband received signal can be written as

y(τ, t) ≃ ∑
b = 1

B
abrect τ − (2rb(t)/c)

TPRI

exp − j2π f c
2rb(t)

c exp jπγ τ − 2rb(t)
c

2

,
(3)

where c is the velocity of the light. The model in (3) is called the
primitive model or scattering centre model. This model is
computationally simple to use to generate radar signatures,
provided the positions and scattering coefficients of the scattering
centres are available. Generally, the scattering centres are assumed
to correspond to trackers placed on the live subject whose positions
are gathered using MoCap technology. The position vector data (rb)
of B scatterers are spline interpolated from 1/Tf to the pulse
repetition frequency (1/TPRI) of the radar. In prior works, ab, of the
B scatterers have been estimated from the size, shape and
orientation of primitives of body parts corresponding to the
scattering centres [20, 30]. For example, a marker placed on the
human arm corresponds to an ellipsoid of dimensions comparable
to the human arm. The approximate nature of the estimation of ab
results in very poor accuracy in the magnitude of the radar
signatures. We propose to use the ray-tracing results to obtain more
accurate estimates of the scattering coefficients.

The nth fast time sample of the discrete received signal for the
pth PRI is

Y[nTs, pTPRI] = Y[n, p] = ∑
b = 1

B
abrect n − (2rb[p]/cTs)

N

exp − j2π f c
2rb[p]

c exp jπγ nTs − 2rb[p]
c

2

.
(4)

Here {p = 1:LP} correspond to the PRIs within L CPIs while
{n = 1: N} corresponds to the fast time samples within one PRI as
shown in Fig. 2. Ray-tracing techniques provide the RCS estimates
(σvv[ f Tf], σhh[ f Tf]) for the whole human body at the video frame
rate of the MoCap data. Since automotive radars usually use
vertically polarised waveforms, we interpolate σvv[ f ], f = 1:F to
radar pulse repetition frequency to get σvv[p], p = 1:P. The
scattering coefficients are assumed to be uniform across the radar
bandwidth at automotive radar frequencies. Therefore, σvv[p]

Fig. 1  MoCap data in stick figure format is embodied using animation software like Poser/Maya. Then the body is rendered with triangular facets. Radar
cross-section is calculated using electromagnetic ray tracing for different polarisations

 

Fig. 2  Radar signal model of linear FMCW of Tupchirp duration with chirp
rate γ and TPRI PRI. Each Tupchirp consists of N samples of f s = (1/Ts)
sampling frequency. Tlong is the duration of L CPIs each consisting of P
PRIs. Tshort is the time interval between M PRIs within Tlong
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may be regarded as the first fast time sample of the scattered signal
in (4), of every pth PRI with γ = 0

σvv[p] = Y[n = 1, p] = ∑
b = 1

B
abexp − j2π f c

2rb[p]
c . (5)

Since humans move slowly, ab fluctuates very slowly across L CPIs
(Tlong) but rb changes significantly across M PRIs
(Tshort = M × TPRI). Therefore, we can frame a linear regression
model ΦA = Ψ using

Φ =

e− j2π f c(2r1[1]/c) … e− j2π f c(2rB[1]/c)

e− j2π f c(2r1[M]/c) … e− j2π f c(2rB[M]/c)

⋮ ⋱ ⋮
e− j2π f c(2r1[LP]/c) … e− j2π f c(2rB[LP]/c)

(6)

and

A =

a1

a2

⋮
aB

, Ψ =

σvv[1]
σvv[M]

⋮
σvv[LP]

. (7)

The integer number of rows of Φ ∈ ℂK × B is obtained by rounding
⌊LP/M⌋ to the nearest integer. We estimate the reflectivities of the
B point scatterers by solving for A using ordinary least squares
(minA ∥ Ψ − ΦA ∥2

2) [36], as shown below

A = ΦTΦ −1ΦTΨ . (8)

Once the scattering centre coefficients are estimated, they can be
used in (4) to obtain the radar received data Y[n, p]. The choices of
L (and thereby Tlong) as well as M (and Tshort) are critical while P is
fixed by the radar specifications. Since humans are typically slow
moving targets, low values of Tshort will result in very small
changes between rb[p] and rb[p + M]. This could result in
singularity errors in the solution. On the other hand, large values of
Tshort will result in large Tlong intervals which is undesirable since
the scattering coefficients are unlikely to remain unchanged over
long durations.

In the above method, we have discussed how to estimate ab for
a monostatic radar configuration of vertically polarised radar.
However, the method can be easily modified to allow considerable
flexibility in terms of the radar carrier frequency, bandwidth, radar
position, aspect angles and polarisation.

• Depending on the polarisation requirement of the simulation
framework, we can generate radar data by selecting
corresponding RCS values (σvv, σhh, σvh and σhv) computed from
ray tracing for Ψ in (6).

• Similarly, we can change from monostatic to bistatic radar
configuration in (3). We can obtain the bistatic radar signatures
by choosing the bistatic RCS values computed from ray tracing.

2.2 Generation of radar signatures

The 2D radar data Y[n, p] along the fast and slow time axes are
processed through Fourier transform to obtain three types of radar
signatures for every Tlong duration. The three signatures are: range–
time ( χ~RT), Doppler–time ( χ~DT) and time-varying range–Doppler
ambiguity plots ( χ~RD). As mentioned earlier, each Tlong interval of
the radar data consists of L CPIs, where each CPI is of P PRIs.

The range-time profile is generated by implementing the 1D
Fourier transform on Y[n, p] along the fast time axis for each pth

PRI as shown in

χ~p
RT[gΔr] = χ~p

RT[g] = ∑
n = 1

N
Y[n, p]H1D[n] e− j(2πgn/N),

g = −N
2 : N

2 − 1.
(9)

Here, Δr = (c/2BW) is the range resolution and H1D[ ⋅ ] ∈ ℝN × 1 is
a 1D window function.

The Doppler velocity spectrogram is generated by
implementing the 1D Fourier transform on Y[n = 1, p] along the
slow time axis for each lth CPI as shown in

χ~l
DT[dΔ f D] = χ~l

DT[d]

= ∑
p = (l − 1)P + 1

lP
Y[n = 1, p]H1D[p]e− j(2πdp/P),

d = −P
2 : P

2 − 1.

(10)

Here, Δ f D = (1/PTPRI) is the Doppler resolution.
Range–Doppler ambiguity plots are generated for each lth CPI

through 2D Fourier transform of Y[n, p] along the fast and slow
time axes as shown below

χ~l
RD[g, d] = ∑

p = (l − 1)P + 1

lP

∑
n = 1

N
Y[n, p]H2D[n, p] e− j(2πgn/N)

e− j(2πdp/P) .
(11)

Here, H2D[ ⋅ ] ∈ ℝN × P is a 2D window function. The process is
repeated across all the L CPIs to obtain the time-varying range–
Doppler ambiguity plots. Algorithm 1 (see Fig. 3) summarises the
proposed simulation methodology to generate the radar signatures
with accurate scattering centre coefficients for every Tlong period. 

3 Experimental results
In this section, we present the experimental results for validating
the proposed methodology. We collect MoCap data of human
motion and use it to simulate radar data. Simultaneously, we collect
hardware-based radar data for the same human subject from a
measurement setup at 77 GHz. We perform ray tracing on the 3D
poly-mesh structure obtained from the stick figure animation of
every frame of the MoCap data to simulate the monostatic RCS of
the pedestrian for vertical polarisation. Then we use these values to
generate scattering coefficients of the scattering centre model of a
human. Finally, we generate the simulated radar signatures which
we compare with measurement results.

3.1 Experimental data collection

We present the experimental setup in this section. We consider a
human subject moving along the trajectory shown in Fig. 4. We
collect MoCap data of the human motion using Xsens MTw
Awinda [37], an inertial measurement unit containing 3D linear
accelerometers and rate gyroscopes. 17 trackers are attached to
defined locations on the front and back of the subject's body to
measure the motion of each body segment. Additionally, position
information of six other body segments on the torso and feet are
determined by interpolation by the MoCap software. Wireless
communication between the sensors and the synchronisation
station takes place at 60 Hz frame rate. The MoCap data of the 23
markers are used for simulating the radar returns. For validation
purposes, the radar returns from the subject are simultaneously
captured using a 77 GHz linear frequency-modulated INRAS
RadarLog sensor [7, 38]. The simulation parameters for the radar
signal model discussed in Section 2.1 are chosen to match the radar
hardware configurations as listed in Table 1. 
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3.2 Results from electromagnetic ray tracing

The animated stick figure model obtained from MoCap is
embodied using an in-built library of a nude male in Poser Pro
software from Smith Micro Inc. [24]. Each frame of the human
body is subsequently rendered into a 3D poly-mesh structure
composed of 3052 triangular facets. The data for each frame
consists of 3D position coordinates of the triangle's vertices which
are exported to MATLAB for further processing. The simulations
are performed for both co-polarisation and cross-polarisation
scenarios. Based on the scattered signal from all the body parts, we
estimate the total monostatic RCS of the human at every frame of
the MoCap data. We present the results for a complete walking
stride – the full swing motion of a hand/leg – of 69 frames from 2.8
to 3.9 s in Fig. 5 for different incident aspect angles. The figure
shows that the co-polarisation (σvv and σhh) components range from
−10 to +5 dBsm. The cross-polarisation components are generally
weaker by ∼10 dB. These RCS values are within the range of those
reported from measurement studies of pedestrians at X-band
frequencies [28, 39]. The versatility of the ray-tracing methodology
allows us to compute RCS at a variety of radar configurations
including carrier frequencies, polarisations and radar positions. In
Section 6.1 of Appendix, we present the monostatic radar RCS at
24 GHz, the other popular automotive radar frequency. We also
provide the bistatic RCS values at both 24 and 77 GHz.

All the results presented in this section were generated with ray
tracing alone. The next set of results are generated by hybridisation
of ray tracing and point scatterer modelling. We use the vertical co-
polarised RCS (σvv) values at front incidence ϕi = 0°  to match the
radar hardware configurations.

3.3 Discussion on parameters

The scattering coefficients are estimated by solving the linear
regression framework in (5). Here Tlong (and L) and Tshort (and M)
are carefully chosen while P is fixed according to the radar's PRI.
Both L and M determine K, the number of rows in Φ matrix, since
K is rounded to the nearest integer ⌊LP/M⌋. Fig. 6a shows the
average l2 norm error, ∥ Ψ − ΦA ∥2

2 / ∥ Ψ ∥2
2 for different values of

K. When K is very large due to small values of M, we get very high
errors. This is because, for slow moving targets, such as humans,
there is a very small variation in the position of some of the
scatterers (such as torso) in consecutive Tshort intervals. This results
in singularities in the problem formulation. We find that the
optimum results occur when K ≃ B, that is when the Φ matrix is
close to a square matrix. Different combinations of L and M can
result in similar values of K. However, when M is very large, this
gives rise to a correspondingly large value of L = (MK /P).
However, long Tlong duration is undesirable since scattering
coefficients are likely to fluctuate over long intervals due to
variations in target aspect. We compared the NMSE of the
measured and simulated range–time ambiguity plots for different M
for a fixed K = 23( = B) and K = 26 in Fig. 6b. The result shows
that the NMSE is lowest for a slightly over-determined matrix
when K = 26( = B + 3). Based on the above studies, we
determined M = 80 and L = 2 to be the optimum values for our
simulation.

3.4 Radar signatures generated from simulated and
measured radar data

Based on the choice of M and L, the Tlong and Tshort used in the
linear regression framework are 12.5 and 4.9 ms, respectively. We
present three types of radar signatures: the high range resolution
profile, the Doppler-time spectrogram and the range–Doppler
ambiguity plots. We compare these signatures with those generated
from other simulation methods and from measurement data
collected from the radar hardware.

Currently, the most commonly used method to simulate radar
signatures of dynamic humans is the primitive-based modelling as
described originally in [29] and then used widely in literature [23,
30, 40]. In this technique, the different body parts are modelled as

Fig. 3  Algorithm 1: Simulation of radar signatures for every
Tlong = LP TPRI

 

Fig. 4  Subject wearing 17 trackers in front (red) and back (blue) view; six
interpolated trackers (green), for collecting MoCap data, walks radially
towards the radar sensor (INSAR RadarLog) from 15 m distance and stops
2 m before the radar along the trajectory (indicated by blue line). The
radar sensor is positioned at [0, 0, 0.65] m. The wireless communication
between the MoCap sensors and the synchronisation station takes place at
60 Hz frame rate
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dielectric ellipsoids whose dimensions are chosen to closely
resemble that of the test subject. We list the dimensions of the
ellipsoidal body parts, which we used in this paper, in Table 2. The
RCS of an ellipsoid [41] of length Hb and radius Rb, at high
frequencies, is

σb = (1/4)π2Rb
4Hb

2

Rb
2sin2 θb + (1/4)Hb

2cos2 θb

1/2

, (12)

where θb is the angle between the incident vector from the radar
and the height axis of the ellipsoid. The strength of the scattered
signal from the bth part of the extended target, ab, depends on the
material properties, dimensions and the aspect angle
(ab = Γ(θb[n]) σb[n]). We incorporate the dielectric material
properties of the target into the RCS estimation through Fresnel
reflection coefficient, Γ(θb), for planar interfaces.

The measurement data is suitably range compensated to obtain
the time-varying RCS of the target. Since this data is naturally
corrupted by noise, an ordered statistics constant false alarm rate

algorithm based on [42] is implemented on the measurement data.
The algorithm adaptively estimates the detection threshold for each
cell based on neighbouring cells. The CFAR algorithm is not
required on the simulation data where noise is not considered. We
present both qualitative and quantitative comparisons between the
simulated and measured radar signatures.

First, we present the high range resolution profile of the
walking human in Fig. 7a (proposed), Fig. 8a (primitive) and
Fig. 9a (measured). The first two figures are generated from
simulation data ( χ~RT) while the third is from measurement data
( χ RT). Values <−40 dBsm threshold are not shown in all of the
figures. We observe that the human is the first stationary for 1.5 s
and then approaches the radar from a range of 15–2 m from 1.5 to
10.3 s. The swinging motion of the arms and legs give rise to
micro-range features about the torso that spans ∼1.5 m. The range
ambiguity is 7 cm. Therefore, it is difficult to resolve the
independent point scatterers from the different body parts along the
range. The simulated results from the proposed technique closely
resemble the measured results in terms of dynamic range. The torso
appears to be the strongest component in both images when
compared to the arms and legs. The range spread due to the spatial
extent of the target is nearly identical in both the images (indicated
by horizontal-dashed lines). The vertical-dashed lines in both
figures indicate the similarity in time span also. Thus visually,
there is a structural similarity in the images. The result from the
primitive-based figure shows many similar features to the
measurement results with respect to the micro-range
characteristics. However, the strength appears much weaker.

Next, we examine the Doppler-spectrograms from the simulated
data ( χ~DT) in Figs. 7b and 8b and measured data ( χ DT) in Fig. 9b.
Since the human is approaching the radar, the Dopplers are mostly
positive with some negative Dopplers due to the back swing of the
arms and legs. The human is walking at a velocity of ∼1.5 m/s.
This results in a strong torso Doppler component in both Figs. 7b
and 9b. We can observe much weaker micro-Dopplers from the
arms and legs up to velocities of 5 m/s. The Doppler span for
measurement results is slightly higher than the simulated results
due to noise characteristics. The periodicity of the strides in all

Table 1 Radar parameters used for simulation are chosen to match the INRAS RadarLog sensor
Parameters Values
carrier frequency ( f c) 77 GHz
bandwidth (BW) 2 GHz
sampling frequency ( f s) 10 MHz
up chirp duration (Tupchirp) 51.2 μs
PRI (TPRI) 61.2 μs
no. of chirps per CPI (P) 1024
range resolution (Δr) 7.5 cm
Doppler resolution (Δ f D) 15.9 Hz
radar sensor position [0, 0, 0.65] m
 

Fig. 5  Simulated monostatic (ϕi = ϕs) RCS across multiple frames corresponding to one walking stride obtained from ray tracing at 77 GHz for three aspect
angles
(a) Front incidence (ϕi = 0°), (b) Oblique incidence (ϕi = 45°) and, (c) 90° incidence (ϕi = 90°)

 

Fig. 6  To make the choice of Tlong (and L) and Tshort (and M)
(a) Estimation error ∥ Ψ − ΦA ∥2

2 / ∥ Ψ ∥2
2 averaged over the number of estimations

done for the duration of target motion for different values of K = ⌊LP/M⌋ is plotted,
(b) Comparing the NMSE between simulated and measured range–time plots for
K = 23 and K = 26 for different values of M
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three figures shows excellent agreement. There is a strong DC
component in the simulation figures that is not present in the
measurement results due to a DC filter in the radar hardware to
eliminate static clutter. Again, the strength of the RCS is
significantly weaker in the simulated results obtained from
primitive modelling in Fig. 8b.

Finally, we present the range–Doppler ambiguity plot for a
single CPI (from 6.16 to 6.22 s) in Figs. 7c, 8c and 9c. Here we
observe that the range and Doppler ambiguities in the simulated
image from the proposed method ( χ~RD) and measured data ( χ RD)
are nearly identical. We are now able to resolve the arms, legs and
torso in the ambiguity plots. The simulation result enables us to
correctly identify the different body parts. Again the peak and
dynamic range of the two plots are very similar while the dynamic
range of Fig. 8c is weaker and the legs and arms are not easily
observed.

In the above discussion, we have qualitatively compared the
simulated and measured results. Next, we perform a quantitative
comparison between the two signatures. There are a plethora of
metrics in the image processing literature for comparing RGB
values in the pixels of different images. However, not all of these
are suited for comparing the signal strength in the bins in radar
ambiguity plots. In our paper, we have selected four metrics – the
normalised mean square error (NMSE), the structural similarity
index (SSIM), the normalised cross-correlation (NCC) and mutual
information (MI) – for comparing simulated and measured radar
images. The NMSE for the range time plot is computed by

NMSE = ∥ χ~RT − χ RT ∥2
2

∥ χ RT ∥2
2 . (13)

Table 2 Dimensions of ellipsoids used to model different body parts. Parameters that were chosen to match the test subject's
body dimensions
Body parts Radius (Rb), cm Length (Hb), cm Body parts Radius (Rb), cm Length (Hb), cm
pelvis 18.14 10.25 left shoulder 4.1 14.7
lower back 15.7 11.3 left upper arm 3.51 30.5
upper back 14.3 10.2 left lower arm 2 25
lower torso 16.3 31.7 right upper thigh 7.8 8.3
upper torso 15.24 10.2 right upper leg 4.6 47
neck 5.64 9.5 right lower leg 3.5 41.1
head 8.1 14.3 right foot 2 18.2
right collar 10 8.6 left upper thigh 7.77 8.3
right shoulder 4.11 14.7 left upper leg 4.6 47
right upper arm 3.51 30.5 left lower leg 3.5 41.1
right lower arm 2 25 left foot 2 18.2
left collar 10 8.6 — — —

 

Fig. 7  Simulated radar signatures of a human walking towards a 77 GHz monostatic radar using the proposed hybrid of primitive modelling and ray tracing
(a) Range–time ambiguity plot, (b) Doppler–time ambiguity plot, (c) Range–Doppler ambiguity plot for one CPI (from 6.16 to 6.22 s)

 

Fig. 8  Simulated radar signatures of a human walking towards a 77 GHz monostatic radar using primitive modelling
(a) Range–time ambiguity plot, (b) Doppler–time ambiguity plot, (c) Range–Doppler ambiguity plot for one CPI (from 6.16 to 6.22 s)
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The SSIM is a metric used for comparing structural differences
such as luminance and contrast between two images [43]. It is
computed by

SSIM = (2E[ χ~]E[ χ ])(2covar[ χ~, χ ])
(E2[ χ~] + E2[ χ ])(var[ χ~] + var[ χ ]) , (14)

where E[ ⋅ ], var[ ⋅ ] and covar[ ⋅ ] denote mean, variance and co-
variance of the two images. When the images are identical, its
value is 1. The NCC between two images is computed by

NCC = ∥ χ RT ∘ χ~RT ∥2
2

∥ χ RT ∥2
2 ∥ χ~RT ∥2

2 (15)

where ∘ indicates a Hadamard product between two matrices. MI
between two images is computed by

MI = ∑
x ∈ χ RT

∑
y ∈ χ~RT

p(x, y)log p(x, y)
p(x)p(y) , (16)

where p( ⋅ ) indicates the frequency of occurrence of the pixel
value (x ∈ χ RT or y ∈ χ~RT) in the images. Table 3 shows the four
metrics for the three radar signatures for the duration of the target
motion. The images generated from the two types of simulation
methods – proposed and primitive – are compared with the
measurement results. In the case of the proposed method, all three
signatures show low values of NMSE and SSIM values close to 1
which indicates the close similarity between the simulation and
measurement data. Fig. 10 shows the NMSE and the SSIM
between the simulated and measured range–Doppler ambiguity
plots over the duration of one walking stride (9 Tlong) from 5.76 to
6.89 s. The results in the figure show the range of SSIM between
0.96 and 0.99 which is close to ideal. The NMSE is likewise close
to zero. When we compare these values to those obtained for the
primitive-based modelling, the differences are stark. Due to the
poor estimation of the RCS strength by the primitive-based
method, the NMSE is high and the SSIM is low. Next, we consider
the NCC for the two methods. Here, we observe that the NCC is
close to 1 for all three signatures for both the proposed and
primitive-based simulation methods. This high value is because the
NCC shows the correspondence of the micro-range and micro-
Doppler features between the simulated and measured results and
not necessarily with the strength of the radar returns. Finally, when
we consider MI, we observe that the MI is higher for the proposed
method when compared to the primitive-based method for all three
signatures. The metric is, however, not very intuitive compared to
the previous three metrics that were discussed.

We have considered a second scenario where a human is
initially still during the first 1.5 s. Then he walks away from the
radar and then turns and walks across the radar as shown in
Fig. 11a. Again, we simulated the range-time and Doppler-time
radar RCS signatures using the proposed method and validated the
results with the measurement data. Note that since the results are
presented in terms of RCS, their maximum and minimum values
are nearly identical to the results obtained for the previous
trajectory. This is because the RCS is generated for the same
human subject and is independent of the distance of the target with
respect to the radar. The Doppler-time measurement results in
Fig. 11b shows that the Dopplers are initially negative when the
subject moves away from the radar. Here, we can see the micro-

Fig. 9  Measured radar signatures of a human walking towards a 77 GHz monostatic radar
(a) Range–time ambiguity plot, (b) Doppler–time ambiguity plot, (c) Range–Doppler ambiguity plot for one CPI (from 6.16 to 6.22 s)

 
Table 3 Quantitative comparison between simulated and measured range-time, Doppler time and range-Doppler plots for first
target trajectory
Algorithm Metric Range versus time Doppler versus time Range versus Doppler
proposed SSIM 0.86 0.81 0.99
proposed NMSE 0.04 0.10 0.03
proposed NCC 0.99 1.0 0.98
proposed MI 0.28 0.33 0.02
primitive SSIM 0.0017 3 × 10−4 6 × 10−4

primitive NMSE 0.3 0.69 0.22
primitive NCC 0.97 0.98 0.98
primitive MI 0.22 0.03 0.01

 

Fig. 10  SSIM and NMSE values for range–Doppler plots for one complete
walking stride from 5.76 to 6.89 s
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Dopplers due to the different limbs. Then when the subject moves
tangentially across the radar, the Doppler values are quite low.
Further, a notch filter is implemented across the DC bin to remove
static clutter in the measurement result. In the range-time
measurement results in Fig. 11c, the range of the target increases
with time and then remains fairly constant while the subject walks
tangentially across the field-of-view of the radar. In both of the
measurement results, the strongest returns arise from the torso
while the weaker returns arise from the arms and legs.

The simulation results for Doppler-time and range-time
signatures are shown in Figs. 11d and e, respectively. Note that
visually, there is a very good qualitative agreement between the
simulated and measured results. The proposed technique correctly
estimates the span of the RCS values of humans. However, there is
a key difference in the signatures – the presence of additional
spikes in the Doppler-time spectrograms. These are caused by time
discontinuities in the MoCap data especially during the human
turning motion (a well-known limitation of MoCap technology).
These are not caused by any artefact from the proposed simulation
process. Quantitative metrics (NMSE, SSIM, MI and NCC) shown
in Table 4, indicate that there is good agreement between the
measured and simulated results. Due to the aforementioned spikes
(during target undertaking turns) in the simulation results, the
results are slightly poorer than the previous case where the target
walked along a straight line.

The computational complexity of the proposed approach
required ray tracing to be carried out at video frame rate, matrix
inversion operations for determining scattering coefficients and
linear operations for point scatterer modelling at radar sampling
frequencies. The matrix inversion operation is computationally not
very hard due to the small size of the matrix ([(K ≃ B) × B]).
Among these three steps, the ray-tracing operation is the most
computationally expensive and hence we discuss its complexity in
the Appendix. If the same human subject is considered, then the
scattering coefficients ab, b = 1:B computed across 1 Tlong duration
can be reused without a significant increase in the error. This has
been tested for the two trajectories of the humans reported in this
paper. The results were almost identical to those reported in
Tables 3 and 4.

4 Conclusion
The shooting and bouncing ray technique based on ray tracing and
geometric optics have been used extensively to accurately model
the RCS of targets at high carrier frequencies. However, the
technique is computationally extensive and hence not suitable for
modelling the time-varying RCS of dynamic human motions, at
radar sampling frequencies, since humans are spatially large 3D
dielectric bodies with considerable variation in posture and pose. A
computationally simpler alternative for modelling radar signatures
of human motion is based on the scattering centre model. However,

Fig. 11  Radar signatures of a human walking away from the 77 GHz monostatic radar with perpendicular and tangential trajectory
(a) Trajectory of a human walking away from the radar and then turning and walking tangentially across it, (b) Measured Doppler-time spectrogram, (c) Measured range-time
spectrogram, (d) Simulated Doppler-time spectrogram, (e) Simulated range-time spectrogram from measurement data

 
Table 4 Quantitative comparison between simulated and measured range-time, Doppler time and range–Doppler plots for
second target trajectory
Algorithm Metric Range versus time Doppler versus time
proposed SSIM 0.87 0.71
proposed NMSE 0.13 0.13
proposed NCC 0.98 0.97
proposed MI 0.13 0.11
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the reflectivities of the scattering centres, in prior works, have been
loosely approximated by RCS values of primitives resembling
body shapes resulting in inaccurate estimates of RCS magnitudes.

In our work, we hypothesise that the scattering coefficients
fluctuate very slowly over multiple CPIs while the positions of the
scatterers change rapidly across multiple PRIs. Therefore, we
estimate the scattering centre coefficients by combining the point
scatterer model with the ray tracing RCS estimates in a linear
regression framework. The positions of the scattering centres are
obtained from an animation model of a pedestrian gathered from
MoCap data. We use the reflectivity estimates to obtain realistic
radar scattered signal that is processed to obtain commonly used
radar signatures such as range–time, Doppler–time and range–
Doppler ambiguity plots. Simultaneous to the MoCap data
collection, we gathered measurement data using an automotive
radar at 77 GHz from which the radar signatures were generated.
The proposed simulated signatures showed a low-normalised mean
square error (<10%) and high structural similarity (>80%) with
respect to the measured signatures. We compared the proposed
simulation signatures with simulation results of state-of-art
primitive-based modelling to indicate the efficacy of the proposed
method. We also demonstrated the versatility of our simulation
method for modelling radar signatures at different polarisations,
aspect angles and carrier frequencies.
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6 Appendix
 
6.1 Pedestrian RCS at alternate radar configurations

The second popular band of carrier frequencies for automotive
radar is 24 GHz [44]. We present the monostatic RCS for different
polarisations and incident angles in Fig. 12. The figure shows that
the RCS values are slightly higher for the horizontal co-
polarisation scenario when compared to the vertical polarisation
especially for the case of frontal incidence (0°). On average, the
frontal incidence also gives rise to the highest RCS values for the
monostatic configuration. In some V2X applications, it may be
useful to have bistatic RCS of pedestrians. Figs. 13 and 14, present
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the variation of RCS with ϕs for bistatic angle = ϕs − ϕi; for a
single frame/pose for different polarisations and for three different
incident angles for two automotive frequencies 24 and 77 GHz. 
The bistatic RCS corresponds to the monostatic RCS when ϕs = ϕi.
Interesting, the bistatic RCS is higher than the monostatic RCS at
some aspect angles for some postures of the human.

6.2 Computational complexity of the proposed approach

In Fig. 15, we indicate the computational time for generating the
results for different processing configurations. A realistic model of
the human requires the body to be rendered by a large number of
small sized triangular facets. For ray tracing, we consider a large
volume of parallel illumination rays emanating from an
illumination plane from grid points that must be densely placed at
least λ/10 apart. The computational complexity is determined by

the intersection tests between all the illumination rays and the
facets on the body. This results in considerable complexity (800 
min to compute RCS at 77 GHz in Fig. 15). Several works in
graphics have addressed the challenges of reducing the
computational complexity associated with ray tracing [45, 46]. We
have implemented the bounding box test in our work where the
poly-mesh human is divided into several distinct parts each
enclosed by a spatial bounding box. Instead of testing every ray
with every triangle, we test every ray with every bounding box.
Only if the ray intersects the bounding box, do we test the
intersection of the ray with every facet within the bounding box.
By using bounding box technique on a single core processor, we
observed about 14 times reduction in computation time from 800 to
60 min in Fig. 15. Since the ray-triangle intersection tests can be
carried out in parallel, the computation time can be further reduced
by implementing the algorithm across multiple parallel processors.
The algorithm was implemented using the parallel computing tool

Fig. 12  Simulated monostatic (ϕi = ϕs) RCS across multiple frames corresponding to one walking stride obtained from ray tracing at 24 GHz for three aspect
angles
(a) Front incidence (ϕi = 0°), (b) Oblique incidence (ϕi = 45°), (c) 90° incidence (ϕi = 90°)

 

Fig. 13  Simulated bistatic RCS versus ϕs such that bistatic aspect angle = ϕs − ϕi; for single frame/pose for three aspect angles
(a) Front incidence (ϕi = 0°), (b) oblique incidence (ϕi = 45°), (c) 90° incidence (ϕi = 90°) at 77 GHz

 

Fig. 14  Simulated bistatic RCS versus ϕs such that bistatic aspect angle = ϕs − ϕi; for single frame/pose for three aspect angles
(a) Front incidence (ϕi = 0°), (b) Oblique incidence (ϕi = 45°), (c) 90° incidence (ϕi = 90°) at 24 GHz
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box of Matlab. By using the parallel processing with the bounding
box technique, the computation time was further reduced to 8 min
for a 20 core system.

Fig. 15  Reduction in computation time of RCS using electromagnetic ray
tracing, with the introduction of bounding box technique and increasing the
number of cores for parallel processing at 77 and 24 GHz
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