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Abstract— Front-view radar images of large moving targets
such as humans are difficult to capture with existing radar
techniques such as SAR and two-dimensional array processing.
SAR images may be significantly distorted by the motion of
the human. Array processing may require a large number of
sensors which may make the radar costly and complex. In this
paper, we propose to reduce the number of sensors required
for generating frontal images by combining compressed sensing
with array processing. First, we apply a compressed sensing
based reconstruction technique to generate frontal images of
a moving phantom target on a frame to frame basis. In the
second technique, we exploit the temporal correlation across
multiple frames using Kronecker compressed sensing to generate
the radar image of each frame. Both approaches are implemented
with 25% and 50% of the number of sensors that would be
required by conventional two-dimensional array processing.

I. INTRODUCTION

High resolution top-view radar images of ground based and
aerial targets have been generated for several decades. The
radars have used wideband pulses for gathering downrange
information and one dimensional apertures for gathering az-
imuth information [1]. However, frontal images convey more
information than top view images for some radar targets such
as humans for applications such as biometry and security and
surveillance operations. Conventionally, front view images of
radar targets have been generated using synthetic aperture
data [1]. However since humans are rarely still, significant
distortions can be introduced in the SAR data. Instead, in 2006,
Lin implemented a three-element continuous wave Doppler
radar to generate a frontal image of a moving human [2]. He
first resolved the different body parts based on their micro-
Dopplers. Then he estimated the azimuth and elevation of each
body part using a three-element receiver. This low-complexity
solution is successful in generating the frontal image of a
human provided the micro-Dopplers are well resolved. When
that is not the case, the images are blurred and distorted.
Alternately, the radar images can be generated with two-
dimensional array processing with large antenna apertures.
For instance, in order to resolve a large target of the size of
1m × 1m, at a standoff distance of 1m, we would require a
10λ × 10λ aperture to get a resolution of 5◦ where λ is the
wavelength of the radar. If the elements in the aperture are
spaced at 0.5λ, then the number of elements required is 400.

Therefore, two-dimensional array processing of large targets
involves a large number of sensors and is hence both costly
and complex. In this paper, we investigate the possibility of
reducing the number of sensors required for imaging large
moving objects by incorporating compressed sensing (CS)
principles into two-dimensional array processing.

Recent investigations in CS in radar can be broadly clas-
sified into two categories. In the first category, belongs the
studies which are theoretical in nature. And the second cat-
egory constitutes of studies of applied nature. For instance,
in some of the earliest studies in CS in radar, [3] and [4],
the problem was to detect ’k’ moving targets by a radar
with N × N number of sensors. The contribution of this
work is to propose an upper-bound on the number of moving
targets the radar can detect based on certain stylized pulses. In
[5], the authors propose a greedy algorithm for certain radar
reconstruction problems which the authors claim, outperform
standard l1−minimization techniques. There are some studies,
like [6], [7], [8], which use concepts of sparsity and inco-
herence in radar applications. However, these are not truly
CS works. This is because, these papers propose adaptive
update techniques for the measurement operator. This goes
against the very philosophy of CS which hinges on the belief
that the measurement is data independent and non-adaptive.
Most of the applied studies address the problem of synthetic
aperture radar (SAR) imaging [8], [9], [10], [11], [12]. In this
scenario, the problem is to reconstruct an image from its to-
mographic projections. CS for tomographic reconstruction is a
well studied problem in other branches, e.g. medical imaging,
microscopic imaging. Radar is a different application area,
but the underlying mathematics for reconstruction remains the
same.

We propose an alternate technique to CS based SAR to
image moving radar targets. Through the use of CS, we
reconstruct a radar image with reduced number of sensors
for the same antenna aperture size as array processing. In
Section II, we briefly introduce the principles of CS. In
Section III, we simulate the frontal image of a phantom
moving radar target using two-dimensional array processing.
We investigate the possibility of reconstructing this radar
image with reduced sensors using two CS techniques. The
first technique reconstructs the radar image at each time
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instant, or frame, piecemeal. The second technique exploits the
inter-frame temporal correlation using Kronecker compressed
sensing to reconstruct each frame. Both techniques are tested
for 50% and 75% reduction of the total number of sensors and
the reconstruction errors are presented.

II. BRIEF REVIEW OF COMPRESSED SENSING

Compressed sensing (CS) studies the subject of solving
an under-determined system of linear equations where the
solution is known to be sparse. Formally, this is expressed
as follows,

ym×1 = Am×nxn×1,m < n (1)

where x is the signal, A is the measurement basis and y is
the measured data. The inverse problem (1), in general has
infinitely many solutions; but what if the solution is known to
be sparse? In his seminal paper [13], Donoho showed that for
most large under-determined systems, a sparse solution is also
unique. This implies that in order to find the unique sparse
solution, one may as well seek the sparsest solution. Thus, it
is natural to solve (1) by the following l0-norm minimization
problem,

min
x
‖x‖0 subject to y = Ax (2)

where l0-norm counts the number of non-zeroes. Unfortu-
nately l0-norm minimization is an NP hard problem and hence
is not applicable in practical situations [14]. CS proves that it is
possible to substitute the NP hard l0-norm by its closest convex
envelope, the l1-norm, and still be able to recover the correct
sparse solution [13], [15], [16]. Thus, instead of employing
(2) to solve (1), one can employ l1-norm minimization,

min
x
‖x‖1 subject to y = Ax (3)

where the l1-norm is the sum of absolute values. This can
be easily solved by linear programming with a complexity
of O(n3). Also, recent research efforts have resulted in the
development of many algorithms that can solve the l1-norm
minimization problem in (3) much faster than standard linear
programming.

Natural signals are almost never sparse. But, they often
have a sparse representation in some other basis. For example,
natural images are sparse in Discrete Cosine Transform (DCT);
medical images are sparse under finite differencing; EEG
signals are sparse in the Gabor basis and so on. When
the sparsifying transform is orthogonal or tight-frame1, the
following analysis-synthesis equations hold. Here, α is the
signal transform coefficient by the sparsity basis, ψ.

analysis : α = ψx (4)
synthesis : x = ψTα (5)

1

Orthogonal : ψTψ = I = ψψT

T ight− frame : ψTψ = I 6= ψψT

The synthesis equation can be incorporated into (1) as shown
below,

y = AψTα (6)

Since α is sparse, it can be recovered via l1-minimization (3)
and x can be reconstructed by applying the synthesis equation.

In order to guarantee recovery, compressed sensing requires
that the measurement basis, A, and the sparsity basis, ψ, be
maximally incoherent from each other [17]. Incoherence is
maximum between the Dirac/Identity basis and the Fourier
basis. Other measurement basis like i.i.d Gaussian matrices,
Bernoulli matrices, random Fourier matrices etc. are also in-
coherent with most of the sparsifying transforms. For practical
problems, the measurement basis is dictated by the physics of
the acquisition process. For example, for Magnetic Resonance
Imaging (MRI) the data are acquired in the Fourier frequency
space and for Computer Tomography, the measurement basis
is the radon transform. For reconstruction, we must choose a
sparsity basis such that: (1) the signal is sparse in the basis
and (2) the sparsity basis is incoherent with the measurement
basis.

III. EXPERIMENTAL EVALUATION OF COMPRESSED
SENSING WITH ARRAY PROCESSING

We test our proposed solution on a phantom radar target that
is simulated in Matlab 2012a. The target is 0.5m × 1m size
and is moving at a velocity of 1.25m/s from an initial standoff
distance of 10m towards the radar over 2 seconds. 20 × 20
sensors are uniformly spaced at 0.5λ to form a 10λ × 10λ
two-dimensional antenna aperture where the wavelength of the
radar, λ, is equal to 4cm. The data are captured at a sampling
frequency of 400Hz.

Data acquisition for two-dimensional (2D) array processing
can be modeled as:

y = Fx (7)

where x is the image (to be reconstructed), F is the Fourier
transform and y are the measured Fourier coefficients along
the sensors of the radar. Since the target is moving, we acquire
a video sequence of radar imaging data rather than a single
frame. Therefore instead of (7), we have a data acquisition
model

yt = Fxt, t = 1, ..., T (8)

where t denotes the tth frame and T is the total number
of frames. If the data are collected on a uniform Cartesian
grid, the image of the target can be reconstructed by applying
inverse 2D FFT on the acquired data. This is represented as:

x̂reft = FT yt (9)

Fig.1 shows one frame of the image of the phantom target
that is generated by the application of 2D array processing
(9) on the radar data. The image is a function of the sine
of the azimuth and elevation positions from the radar. A 2D
window function was applied on yt which has resulted in the
sidelobes that are observed in the radar image. The image has
30dB dynamic range. Placing sensors at every location of the
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Fig. 1. Image of phantom radar target generated by 2D array processing
with 20 x 20 sensors

TABLE I
RECONSTRUCTION ERRORS

50% sampling 25% sampling
Piecemeal 0.1240 0.2824

KCS 0.1133 0.2564

Cartesian grid is costly. Therefore, the challenge here is to
reduce the number of required sensors for the given aperture
size. This is possible only if the sensor grid space is partially
sampled. Such a data acquisition can be modeled as:

yt = RFxt (10)

where R is the sub-sampling mask i.e. it has 1’s at sam-
pling locations and 0’s at unsampled locations. Therefore,
the objective is to reconstruct the image from the partially
sampled coefficients so that the reconstructed image (say x̂rect )
is as close as possible to the image acquired from the fully
sampled data (x̂reft ). In other words, we must solve an under-
determined inverse problem using compressed sensing.

A. Piecemeal Reconstruction

First, we propose a solution which reconstructs each frame
individually. CS demands that sampling masks, R, be random
in nature [18]. Therefore the positions of the sensors are
chosen randomly at t = 0 and subsequently fixed for all
the frames. Since the measurement basis is a random partial
Fourier basis, we choose to reconstruct the image using the
Dirac basis as the sparsity basis. The Dirac basis is chosen
because of two factors. First, the basis is maximally incoherent
with the measurement basis [17], [18]. Second, the radar
image is sparse in the spatial domain, i.e. it is sparse in the
Dirac basis. Fig.2 shows the sorted absolute pixel values of
one frame. The decay is very fast, implying that our sparsity
assumption holds. We recover each of the frames, individually,
by solving the following l1-norm minimization problem,

x̂t = min
x
‖xt‖1 subject to yt = RFxt (11)

Off-the-shelf l1-minimization solvers did not yield good re-
sults; therefore we coded our own solver based on cooling

Fig. 2. Decay of pixel values of a single frame

the standard iterative soft thresholding (IST) algorithm [19].
The actual aim is to solve the constrained problem (11). How-
ever, since solving it directly is difficult, the cooling method
proposes an alternative; it solves a series of unconstrained
optimization problems of the form:

min
x
‖yt −RFxt‖+ λ ‖xt‖1 (12)

Solving (12) is easy using iterative soft thresholding. The
cooling algorithm consists of two loops. The inner loops solves
(12) via IST. The outer loops cools the value of λ. The algo-
rithm starts with a high value of λ, but progressively reduces
in each outer loop. This technique has been successfully used
before for solving such constrained optimization problems
[20], [21] and [22]. For this work, we have to start with
λinit = max(abs(FTRT yt)); in each iteration λ is decreased
by 50% and this is continued till the value of λ has fallen to
10−4 times its initial value.

We reconstructed the radar image with 50% of the sampling
sensors and with 25% of the sampling sensors. Fig. 3 shows
the reconstructed images for the same frame for both the
cases. These images compare favorably with Fig. 1. The
reconstruction error for both cases are presented in Table I.
The error is measured in terms of Normalized Mean Squared

Error, NMSE =
‖x̂ref

t −x̂rec
t ‖2

‖x̂ref
t ‖2

. This is a standard metric used

for verifying CS reconstructions.

B. Kronecker Compressed Sensing

Frames in a video sequence are temporally correlated be-
cause the change between subsequent frames is marginal. In
the piecemeal solution, we do not exploit the inter-frame
temporal correlation. It has been found that for dynamic MRI
reconstruction, exploiting the temporal correlation improves
the reconstruction accuracy [23], [24]. In this work, we pro-
pose to apply the same technique to improve the accuracy
of the radar imaging. The data acquisition model (9) can be
succinctly represented as:

vec(y) = (I ⊗RF )vec(x) (13)
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(a) (b)

Fig. 3. Image of phantom radar target generated by piecemeal compressed sensing in conjunction with array processing with (a) 50% and (b) 25% of total
number of sensors used for two-dimensional array processing

where y = [y1| · · · |yT ], x = [x1| · · · |xT ], I is the identity and
vec has the usual connotation. The problem is to reconstruct
xt. We observed that at each pixel location, the temporal
variation is sparsely represented in the DCT domain, i.e. if we
look at position i in the frame xt, we will see that the signal
[x1(i), x2(i) · · · , xT (i)] is sparse in DCT. In other words, x is
sparse in DCT along the rows. We can represent this sparsity
in the following fashion,

α = vec(xD) (14)

where D is the DCT. This can be conveniently expressed in
Kronecker product form as follows,

α = (DT ⊗ I)vec(x) (15)

where I is the Dirac/Identity basis - the sparsity basis along
the columns of x. As DCT is orthogonal, the Kronecker basis
(DT ⊗I) is orthogonal as well. This allows us to express (13)
in the following form:

vec(y) = (I ⊗RF )(DT ⊗ I)Tα (16)

Typically α has a sparser representation compared to the
individual frames, and thus yields better reconstruction when
solved by l1-norm minimization. Once (16) is solved via l1-
minimization, we obtain x via,

x̂ = (DT ⊗ I)Tα (17)

Again, we test KCS with 50% sampling and with 25% sam-
pling sensors. The reconstructed images for the same frame
are presented in Fig.4. There appears to be reduced error
when compared to Fig.3. We present the reconstruction errors
in Table I. The KCS yields lower errors when compared to
piecemeal reconstruction as anticipated.

IV. CONCLUSION

Compressed sensing is combined with two-dimensional
array processing to reduce the number of sensors required
for generating frontal images of moving radar targets. The
reconstructed radar images with CS compare favorably with

the images generated by conventional array processing for a
phantom radar target. Inter-frame correlation across multiple
frames is successfully exploited by Kronecker compressed
sensing for yielding better results when compared to piecemeal
reconstruction.
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