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ABSTRACT In this paper, we propose to produce synthesized micro-Doppler signatures from different
aspect angles through conditional generative adversarial networks (cGANs). Micro-Doppler signatures of
non-rigid human body motions vary considerably as a function of the radar’s aspect angle. Because the
direction of the human motion can be arbitrary, a large volume of training data across diverse aspects is
needed for practical target activity classification through machine learning. As measurements can require
significant monetary and labor costs, the synthesis of micro-Doppler signatures can be an alternate solution.
Therefore, we investigate the feasibility of data augmentation through synthesizing micro-Doppler signatures
of human activities from diverse radar aspect angles with input data from a single aspect angle. For the
training data, the micro-Doppler radar signatures of 12 human activities are generated from different angles
ranging from O to 315 degrees, at 45-degree increments, through simulations. For each angle, cGANs are
trained to synthesize the micro-Doppler signatures for that specific angle given micro-Doppler signatures
from another angle. The output of each model is evaluated by calculating mean-square errors and structural
similarity indexes between the synthesized micro-Doppler signatures and the ground-truth ones obtained
from simulations. We test three different scenarios, and report the respective results.

INDEX TERMS Generative adversarial networks (GAN), deep learning, micro-Doppler signatures, mono-

static radar, multistatic radar, human activity.

I. INTRODUCTION

Radar based analysis of human activities is increasingly
applied in defense, surveillance, and health care scenarios
for its capability to operate 24/7, in through-object sce-
narios, under poor weather conditions, and in situations
where privacy is a concern. When analyzing human motion,
extraction of signatures from radar returns is a key compo-
nent in radar signal processing. Among many radar signa-
tures, micro-Doppler signatures in the joint time-frequency
domains produced from non-rigid body motions [1] have
been extensively studied for purposes of human activity
classification [2], [3], gait analysis [4], abnormal gait clas-
sification [5], senior fall detection [6], hand gesture detec-
tion in indoor scenarios [7], and pedestrian detection in
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outdoor automotive radar scenarios [8]. However, because the
Doppler information embedded in these signatures is a func-
tion of the aspect angle of the monostatic radar, the charac-
teristics of radar signatures can significantly vary depending
on the target’s trajectory with respect to the radar. Accord-
ingly, deep learning algorithms, known as some of the best
for classification, require large data sets of micro-Doppler
signatures, captured across diverse radar aspects, to exhibit
stable classification accuracy for arbitrary human motions.
Deep learning has played a critical role in solving an array
of scientific, engineering, medical, and financial problems,
and radar target classification problems have been no excep-
tion: deep learning has been a main stream in radar target
classification. Various deep learning models, such as auto-
encoders, deep convolutional neural networks (DCNNSs),
and deep recurrent neural networks (DRNNs), have been
exploited to recognize radar imagery. DCNN captures
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features in radar imagery such as spectrograms or
range-Doppler diagrams for target recognition [9], while
DRNN analyzes time-varying radar features and identi-
fies temporal patterns in them [10]. Because deep learning
requires a large number of diverse data to avoid overfitting,
radar imagery has often suffered from the data deficiency
problem, a critical problem in radar imagery that has been
addressed by many trials, including ones using transfer learn-
ing [11] and data augmentation through synthesizing fake
data by generative adversarial networks (GANs) [12], [13].
Acquiring sufficient radar data is a key component of suc-
cessful training.

From an information point of view, multistatic radars
offer a second important advantage over single-aspect angle
data obtained from a monostatic radar. When, for example,
a human moves tangentially or perpendicular to the boresight
of a monostatic radar antenna, no micro-Doppler appears.
However, a second orthogonally placed radar antenna would
capture maximal micro-Doppler data in response to the
human’s radial motion toward it. Accordingly, use of mul-
tistatic radar reduces aspect angle deterioration or distortion
of radar signatures by offering different radar viewpoints on a
target. Multistatic radars may also help in overcoming prob-
lems relating to shadowing, particularly when used to classify
and reveal in-depth information regarding human activity suf-
ficient to identify personnel, distinguish between potentially
armed and unarmed personnel [14], classify human activi-
ties, determine target orientation [15], and recognize hand
gestures [16]. However, although monostatic radar systems
are currently in wide use, upgrading to a multistatic radar
system may involve challenges related to budget, labor, and
physical space. Furthermore, hardware challenges are related
to synchronization of data across multiple radars. By contrast,
a software solution offers advantages of manageability and
scalability over hardware upgrades.

Synthesis of multistatic spectrograms of human activ-
ity using data from a single radar has the potential to
increase information regarding human movement from dif-
ferent aspect angles. If the target’s motions and radar channel
conditions are fully known, the signatures can be directly
simulated. However, some target motions may be compli-
cated and difficult to realistically model with a low degree of
error. For example, non-analyzable targets, such as humans,
animals, birds, and insects, are hard to simulate correctly.

In this paper, we explore the feasibility of using radar
spectrograms gathered from a single aspect angle of human
activity to synthesize spectrograms from other angles using
conditional GAN, a variant of the general GAN used in
previous micro-Doppler radar literature [12], [13]. We inves-
tigate the possibility of image-to-image translation with
conditional adversarial nets to generate spectrograms from
different monostatic radar points of view. In 2016, image-to-
image translation with conditional adversarial nets (Pix2Pix)
was introduced for computer vision [17]. In the radar
community, Pix2Pix has been used to despeckle colorized
SAR images [18]. The goal of our paper is to synthesize
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spectrograms from 45 degrees to 315 degrees, at increments
of 45 degrees, using the Pix2Pix model, given an input
spectrogram at a (-degree aspect angle that represents a
human subject moving away from the radar. It should be
noted that changes in aspect angle do not involve a con-
stant cosine relationship, because the angle between radar
radial direction and human movement direction is a func-
tion of time. To construct the training data, we simulate
micro-Doppler signatures of a human subject from several
radar aspect angles using MOCAP data. The simulated data
set is divided into a training set and a test set to train and
evaluate the performance of Pix2Pix. Once trained, Pix2Pix
synthesizes micro-Doppler signatures from a specific angle,
and we compare them with ground-truth simulated signatures
obtained from MOCAP-based modeling. The contributions
of this paper are as follows; i) we proposed to synthesize
micro-Doppler signatures seen from different aspect angles,
ii) image-to-image translation through deep learning has been
applied to micro-Doppler signatures.

The paper structure is as follows. In Section II, we describe
the method to simulate micro-Doppler signatures of 12 differ-
ent human activities at varying aspect angles. In Section III,
we present a detailed description of the Pix2Pix and its
structure. Section IV discuss the results of synthesized
micro-Doppler signatures for the three cases. The conclusions
and future research suggestions are provided in Section V.

Il. HUMAN MICRO-DOPPLER SIMULATION

The micro-Doppler signatures of humans can be simulated
from MOCAP data as described in [19]. These data describe
the articulation of a 3D human skeletal structure across
a motion trajectory at a video frame rate of 30 Hz. The
animation data are suitably interpolated to radar sampling
frequencies. Then each bone, b, in the skeleton is modeled
as an ellipsoid primitive whose radar cross-section (op) at
microwave frequencies is analytically defined as a function
of radar carrier frequency, f., and aspect angle, 6,(t). Further-
more, the dielectric properties of the human skin are incorpo-
rated in the RCS expression. Time-varying scattering centers
(75(2)) of all primitives are identified at the primitives’ center.
Then radar returns from a monostatic continuous-wave radar
located at 7, are given by

Xp (1) = ZB AMejznfCM 0

=10

where rp, is the Euclidean distance between r(r) and s
where the latter is the position of the monostatic radar. In the
preceding expression, A, encompasses the transmitted power
and the gains of the radar antennas. The foregoing method can
be easily modified to a multistatic configuration by changing
the radar’s position.

In this paper, we consider simulated radar returns from
twelve human activities that consist of uniform motions
and non-uniform motions; crouching to running, crawling,
running, running to jumping to walking, running to hop-
ping to walking, running with boxing, running to crouching,
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FIGURE 1. Examples of MOCAP data: (a) crawl, (b) run, (c) run to jump to
walk, (d) run to hop to walk.
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FIGURE 2. Human activity and radar positioning (black radar positioned
at 0 degree).

skipping, walking, walking to hopping to walking, walking
to leaping to walking, and walking to picking up a box.
Fig. 1 shows examples of MOCAP data for different motions,
taken from the CMU Graphics Lab Motion Capture Database.
We have varied the operating frequency and gain of the
antenna in the simulation. The radar carrier frequency used
in the simulations ranges from 6.5 GHz to 8.5 GHz at incre-
ments of 0.05 GHz, and the isotropic gain of the radar anten-
nas varies between 5 dBi and 15 dBi. This is for the purpose of
not only increasing the number of data samples given number
of MOCAP data, but including diversity of dataset in terms
of the signal-to-noise ratio and a scaling effect in the Doppler
frequency.

The simulations are conducted at eight different radar
positions with 45-degree angular separation. By changing
the center frequency and isotropic gain, 451 spectrograms
are generated for a particular angle and activity, for a total
of 5,412 data samples. The radar is placed at a radial distance
of 5 meters from the center of the simulation space in each
case. Fig. 2 shows eight radar locations and simulation con-
figurations.

Ill. IMAGE-TO-IMAGE TRANSLATION WITH
CONDITIONAL ADVERSARIAL NETWORKS

We use Pix2Pix, a variant model of GAN, to synthe-
size micro-Doppler signatures. Pix2Pix is designed to
carry out image-to-image translation using conditional
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GANs (cGANs) [17]. In general, GANs use two neu-
ral networks—a generator network and a discriminator
network—working against each other. The generator syn-
thesizes a data sample that imitates the training output data
from random noise. The discriminator classifies these data
as either real or synthetic without any prior knowledge of
data type. The main difference between cGANs and general
GAN:Ss is that the generator in the former neural network takes
two inputs, noise and label, to synthesize each data sample.
After training, the cGAN generates data based on a given
label. We describe the cGAN algorithm in detail hereafter.
In Pix2Pix, the label is an input image. The loss function of
Pix2Pix is defined as

Losses = argmingmaxpL.gan (G, D) + AL (G)  (2)

The generator network (G) minimizes the loss function to
confuse the discriminator network and the discriminator net-
work (D) maximizes the classification accuracy. The A is an
integer set to 100 to give importance to the /;-norm. In the
cGAN, the loss function is defined as

Lcgan (G, D) = Ex y [IOg D(x, y)]
+Ex , [log(1 — D(x, G(x,2))]  (3)

where x is the input data, y the synthesized data, and z the
noise vector. The £ 1(G) encourages the generator network
to generate output near the ground truth:

L11 (G) = Exy, [lly — Gx, )] “

In GANs and cGANSs’ loss functions, noise vector is used
as an input to the generator network. However, in Pix2Pix,
the noise vector is not used as an input. Instead, noises are
introduced in the generator network in dropout layers.

The generator is designed to take input spectrograms of 0
aspect angle and produce output spectrograms at another
angle designated by the label. The generator network con-
sists of encoder and decoder blocks. The network generates
the target output by downsampling the data in the encoder,
processing them, and then upsampling them using the U-Net
decoder [20], which adds extra connections between the
encoder and decoder blocks of the network to preserve
low-level information. Fig. 4 presents a simplified illustrative
example structure of the U-Net. It should be noted that the
more complex version of the network used in our work, which
featured more layers, is not shown due to space constraints.

In the U-Net, a single encoder block has a convolution layer
with a kernel size of 4 x 4, stride of 2, batch normalization,
and leaky ReLU activation functions. While configuring the
U-Net, the number of kernels in each encoder layer must be
specified and the batch normalization may be disabled. In
our work, the spectrogram is passed through the first encoder
layer, with 64 kernels and disabled batch normalization. Then
the data are passed through the second and third encoder
layers, having 128 and 256 kernels, respectively, with batch
normalization enabled. Next the data are passed through the
fourth to eighth encoder layers, having 512 kernels each, with
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FIGURE 3. Micro-Doppler signatures of the human activity depending on
radar positioning, (a) 0 degree, (b) 45 degrees, (c) 90 degrees, and
(d) 135 degrees.
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FIGURE 4. Simplified U-Net architecture for a generator network.

batch normalization enabled. The output is passed through
a series of seven decoders. Each decoder has a transposed
convolution layer with a kernel size of 4 x 4, stride of 2, batch
normalization, and dropout rate of 0.5. Again, the number
of kernels must be specified in each layer, and the dropout
can be activated only for the first three layers. The ninth
decoder layer, which consists of 512 kernels, takes the output
of the eighth layer as input. The tenth layer concatenates the
output of the previous layer with the seventh layer and passes
it through a decoder having 512 kernels. The eleventh and
twelfth layers take the previous layer and outputs of the sixth
and seventh layers, having 512 kernels, and pass it through a
decoder. The thirteenth, fourteenth, and fifteenth layers take
the previous layer and outputs of the fourth, third, and second
layers, having 256, 128, and 64 kernels, respectively, and
pass them through a decoder. The last layer has only a single
transposed convolution layer, with three kernels of size 4 x
4 and a tanh activation layer.

The use of /1-norm in the loss function makes the output
less sharp. To solve the issue, PatchGAN is used in the
discriminator network [17]. PatchGAN segments an image
into multiple N x N (70 x 70 pixels, in our case) patches
and classifies each patch. The output of the PatchGAN is
thus a smaller (30 x 30) matrix with a decision of true or
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FIGURE 5. System processing steps to generate Pix2Pix output of one
angle.

fake for each patch in the corresponding matrix element.
The final decision about whether the image is real or fake is
based on the average of the decisions across all patches. The
discriminator network follows a DCNN structure but takes
two inputs instead of one. The two inputs are the Pix2Pix
input image and an artificial/real image. These images are
concatenated at the first step of the discriminative network.
Then the input is passed through a convolution layer having
64 kernels, with stride of 2, followed by leaky ReLU. All
convolution layers have a kernel size of 4 x 4. Afterward, two
convolution layers having 128 and 256 kernels, respectively,
are followed by batch normalization and leaky ReLU. 2D
zero padding is applied to the output of the last layer. This is
followed by a convolution layer having 512 kernels and stride
of 2, with batch normalization and leaky ReL.U. Finally, 2D
zero padding and a convolution layer with a single kernel are
applied.

The deep learning algorithm was implemented with Ten-
sorFlow and Python, using an Intel 19 CPU and an NVIDIA
GeForce RTX 2080 GPU. All spectrograms have the same
pixel size of 256 x 256. The dataset is divided into 80%
for training and 20% for testing. All transposed convolutions
and regular convolutions are initialized using the random
normal initializer. The epoch is set to 30. To improve training
performance, input spectrograms are randomly jittered and
mirrored. The batch size is set to one.

IV. GENERATING MULTISTATIC MICRO-DOPPLER
SIGNATURES

Using the simulated micro-Doppler signatures, we train the
image-to-image translation with cGAN for three scenarios.
In the first, we train the Pix2Pix model using single activity
data to generate the spectrograms for seven different aspect
angles. In the second, we use multiple activities in the training
process, and during testing, the trained models generate the
corresponding spectrograms at seven different aspect angles
given any one of the activities. In the third and most chal-
lenging, we use ten activities in the training and use the
remaining two activities to evaluate Pix2Pix’s ability to syn-
thesize micro-Doppler signatures at different aspect angles
for unknown images of a new motion. In short, the network
must generate results for an activity it has not encountered
during training. To quantify the performance of the algorithm,
we apply two metrics to the synthesized micro-Doppler spec-
trograms obtained from Pix2Pix and reference ground-truth
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FIGURE 6. Example results from the first scenario. Three spectrograms (clockwise) are 0-degree input, ground truth at the desirable aspect angle,
and output spectrogram of the desired angle: (a) crouch to run at 45°, (b) crawl at 90°, (c) run at 135°, and (d) run to jump to walk at 180°.

spectrograms obtained directly from simulations: normalized
mean square error (NMSE) and the structural similarity index
(SSIM). Whereas NMSE captures the pixel-by-pixel differ-
ence in energy between test output images and ground-truth
images, SSIM is useful for comparing visual similarity in
two images. In ideal scenarios, when test output images are
identical to ground-truth images, NMSE is 0 and SSIM is 1.
Fig. 5 summarizes the steps needed to produce the synthe-
sized spectrograms:

Pix2Pix is trained to generate micro-Doppler signatures of
human activities at different aspect angles. Three scenarios
are tested. In the first case, a network is trained on a single
activity along one aspect angle. During test, the network
synthesizes the radar signature of the corresponding activ-
ity along the desired aspect angle (different from the input
angle). In this scenario, we test a total of twelve different
activities one by one. For each activity, seven independent
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TABLE 1. NMSE and SSIM for each angle for the first scenario.

Angle NMSE SSIM
45° 0.68 E-04 0.81
90° 0.87 E-04 0.81
135° 1.09 E-04 0.77
180° 1.30 E-04 0.75
225° 1.06 E-04 0.77
270° 0.77 E-04 0.81
315° 0.50 E-04 0.82

Pix2Pix models are trained to translate images from 0 aspect
angle to 45°,90°, and up to 315°. As aresult, we train 84 inde-
pendent models in this scenario.

Fig. 6 demonstrates the results of the first scenario. In the
figure, there are three images for each case: the input
spectrogram at 0 aspect angle, ground truth at the angle of
interest, and the synthesized spectrogram at the angle of
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FIGURE 7. Example results from the second scenario. Three spectrograms (clockwise) are 0-degree input, ground truth at the desired aspect
angle, and output spectrogram of the desirable angle: (a) walk at 45°, (b) crouch to run at 90°, (c) run to hop to walk at 135°, and (d) run to

jump to walk at 180°.

interest. Thus, we expect that the second and the third spectro-
grams will be resemble to each other. Table 1 shows the error
value for each angle. For all activities, the average NMSE
is 0.9E-4 and the standard deviation is 0.44E-4. The lowest
NMSE achieved by walking to picking up a box for angle
315° with NMSE of 0.2E-04 and maximum value is 1.85E-
04 for walk to leap to walk for angle 225°. The average SSIM
is 0.79, and the standard deviation is 0.1. For all activities,
the lowest value achieved for running with a box at angle
180° with a value of 0.5 and maximum SSIM is 0.92 for
walking with a box at angle 270°. The low value of NMSE
and high SSIM show that the proposed algorithm is effective
at synthesizing spectrograms at different aspect angles with
models trained for a specific activity and input—output angle
combinations.
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TABLE 2. NMSE and SSIM for each angle for the second scenario.

Angle NMSE SSIM
45° 1.07E-04 0.76
90° 1.31E-04 0.77
135° 1.59E-04 0.72
180° 1.64E-04 0.71
225° 1.42E-04 0.74
270° 1.21E-04 0.77
315° 0.75E-04 0.79
Average 1.28-E04 0.75

In the second scenario, we train Pix2Pix for each angle,
which results in only seven models trained to generate spec-
trograms by angles, as all twelve activities are used together
to train Pix2Pix. In short, the network is customized not
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FIGURE 8. Example results from the third scenario. Three spectrograms (clockwise) are 0-degree input, ground truth at the desirable aspect
angle, and output spectrogram of the desired angle: (a) run to jump to walk at 45°, (b) crawl forward at 135°, (c) run to jump to walk at 180°, and

(d) run to jump to walk at 225°.

TABLE 3. NMSE and SSIM for each angle for the third scenario.

Angle NMSE SSIM
45° 1.56E-04 0.76
90° 2.11E-04 0.76
135° 2.46E-04 0.63
180° 3.27E-04 0.59
225° 2.07E-04 0.69
270° 2.22E-04 0.72
315° 1.94E-04 0.73

Average 2.23-E04 0.69

to a specific activity but rather for a specific combination
of input—output aspect angles. Fig. 7 presents the examples
of input spectrogram of any kinds of activity, ground-truth
spectrograms at the aspect angle of interest, and synthesized
spectrograms at the aspect angle of interest. Table 2 shows
the averaged error values of all activities for each angle.
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If we investigate the number in details, NMSE ranges from
0.75E-04 to 1.64E-4 and SSIM from 0.71 from 0.79. Again,
we observe very low NMSE and high SSIM, showing that the
models can be trained per the input—output aspect angle but
need not be customized for specific types of target activities
to synthesize spectrograms at an aspect angle of interest.
It should be noted that in this second scenario, all twelve
activities were used for training and testing.

In the third scenario, seven models by angles are trained
using a subset of ten randomly chosen activities from the
twelve activities. During testing, the network is used to gen-
erate spectrograms of the remaining two activities-crawling
forward and running to jumping to walking-previously not
used in training. Fig. 8 shows the synthesized results of the
testing activities. Table 3 shows the averaged error values of
all activities for each angle. If we investigate the values in
details, NMSE ranges from 1.56E-04 to 3.27E-4 and SSIM
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from 0.59 from 0.76. We observe higher errors than in the
first and second scenarios, but the similarity of synthesized
spectrograms.

V. CONCLUSION

We investigated the feasibility of generating multistatic
micro-Doppler signatures using data from a single aspect
angle using image-to-image translation with conditional
GAN:Ss. The training data were obtained by simulations using
MOCAP data. We tested three scenarios: (i) translating a
specific activity from one angle to a certain aspect angle,
(ii) translating spectrograms from all trained activities from
one angle to a certain aspect angle, and (iii) translating spec-
trograms of unknown activities from one angle to another
angle. We found that Pix2Pix could generate spectrograms
for different aspect angles when a spectrogram at the 0 angle
is given. The accuracy of synthesizing spectrograms for the
first scenario was higher than for the third scenario, which
involved unknown activities. This technique can potentially
serve as a data augmentation method to enhance the diversity
of the radar data set in terms of aspect angles. The sig-
nificance of this research is that we augmented the micro-
Doppler data set from different aspect angles, increasing
the diversity of the dataset. The augmented data set has the
potential to improve classification accuracy.

Future research should include collection of large data sets
of diverse activities to reduce errors for spectrogram synthesis
of unknown activities. In addition, to validate the quality of
the synthesized data, it will be necessary to include synthe-
sized data in the training process for the target classification
problem to ensure accuracy improvement. Furthermore, this
research can be expanded to synthesize radar data from a
different carrier frequency as well as to produce inverse syn-
thetic aperture radar imagery from a different angular velocity
of target motion.
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