
 

Abstract—The capability to detect, track and monitor human 
activities in non-line-of-sight environments is an important 
component of security and surveillance operations. The 
movement of the human body and limbs result in unique 
microDoppler features which can be exploited for identification 
and classification of different types of human motions.  In this 
paper, a method to simulate the microDoppler signatures of 
complex human motions from virtual reality animation data is 
presented.  The simulation method is tested on three types of 
human motions - walking, running and crawling. The simulated 
Doppler spectrograms are compared with measurement results. 
Additional simulation data are presented to show patterns over a 
long time duration and the effect of frequency and viewing angle. 
 

Index Terms—Doppler spectrogram, microDoppler, human 
activities, computer animation data, radar cross-section 

I. INTRODUCTION 
Detection and monitoring of human activities have important 
applications in security and surveillance operations. For this 
purpose, different types of sensors have been developed such as 
optical, infrared and RF sensors. One of the unique advantages 
offered by an RF sensor system is the capabilities of operating 
in non-line-of-sight situations such as through building walls 
and over 24-hour, all-weather conditions. Doppler-based RF 
sensors, in particular, are useful for detecting human motions 
since stationary clutters from the background environment are 
suppressed. Furthermore, low-cost commercial sensor 
components are readily available at microwave frequencies.  

Human Doppler returns are characterized by unique 
microDoppler features that result from the dynamic movements 
of the different body parts [1-3]. The microDoppler features are 
best observed using joint time-frequency representations such 
as the short-time Fourier transform (STFT) [1, 2]. The resulting 
Doppler spectrograms can be used for identifying and 
classifying different types of motions [4, 5].  In addition to 
measurement data collection, it is useful to develop the 
capability to simulate such microDoppler data from different 
human movements.  Such a tool can provide the means to 
pinpoint cause-and-effect for phenomenology interpretation 
and to generate training data for algorithm development.  To 
date, models have been developed to simulate the constant 
velocity walking motion of a human [1, 3]. In [1], infrared 
motion capture data of the different limbs were combined with 
a point scatterer model to generate the Doppler spectrogram.  In 
[3], the Thalmann model for human gait was used in 
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conjunction with a primitive based predictor to generate the 
Doppler spectrogram. However, Doppler signatures have not 
been simulated for more complex human motions. 

In this paper, we generate radar microDoppler data of human 
motions using the computer animation data that are available 
from the video gaming and animation movie industries. 
Different formats of animation data files are available. Here we 
use BioVision's BVH data format and Acclaim's ASF/AMC 
data format to simulate different human motions. The 
simulation results are verified by conducting measurements on 
a human subject with a Doppler radar testbed in the laboratory.  

II. SIMULATION OF RADAR RETURNS USING COMPUTER 
ANIMATION DATA 

In this section, we present the methodology used to simulate 
Doppler radar returns using computer animation data. In the 
first step, we obtain the three-dimensional position of each 
bone of the human body at each time instant from existing 
animation files. In the next step, we compute the time-domain 
returns of the human mover by computing the radar cross 
section (RCS) of the human at each time instant using a 
primitive based predictor.  

Most animation files have two parts. The first part specifies 
the initial pose of the human. This section is under the header 
'skeleton' in the BVH data files and is a separate file with the 
file extension '.asf' in the ASF/AMC data format. A hierarchical 
distribution of the bones in the human body is described in this 
part. Each bone is connected to a parent bone through a joint. 
Bones that are not connected to child bones are terminated with 
end-effectors instead of joints. The relative length and 
orientation of each bone are specified by the vector defined 
between the three-dimensional positions of the two joints (or 
end-effector) connected to them. The center of gravity of the 
human lies at the root joint. The root joint is subject to 6 degrees 
of freedom (DOF) with respect to the initial pose. This includes 
translation of the position vector of the root along the X, Y and Z 
axes as well as Euler rotation angles (α, β, γ) about the X, Y and 
Z axes respectively. All the other joints are subject to 3 DOF 
which are the Euler rotation angles. The changes in the DOF 
data of the joints over time give rise to animation motion of the 
human. These changes are specified for each frame of the 
animation under the header 'motion' in BVH data files and in a 
separate file with the file extension '.amc' in the ASF/AMC data 
files.   

The global three-dimensional position vector of each bone is 
derived using the matrix operations discussed in [6]. First, a 
local transformation matrix (Mbone) is created for each bone 
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from the local translation (T) and rotation information of that 
bone. For any bone, the translation information is the offset of 
the bone from its parent which is specified in the skeleton 
section. For the root joint, the translation data is obtained from 
the motion section of the data file. Based on the DOF data 
specified for each joint by the motion section, a rotation matrix 
(R) is computed by multiplying 3 separate rotation matrices (Rx, 
Ry, Rz), one for each axis of rotation: 

  
R = Rx Ry Rz                      (1) 

 
The order of multiplication of the three rotation matrices Rx, Ry 
and Rz is specified in the data files. The position of each bone is 
obtained from the transformation matrix (M) computed by 
concatenating the local transformation matrix of the bone with 
the local transformation of its parent, then its grandparent, and 
so on: 
 

M = Mbone Mparent Mgrandparent…                                   (2) 
 
In order to compute the RCS of the human, we use a primitive 
based model.  Each body part associated with a bone is modeled 
as an ellipsoid. If the calibration units for the data are not 
specified, we scale the size of the body part to the average 
dimensions (height He and radius Re) mentioned in [3]. The 
high-frequency RCS (σ) of the ellipsoid is given in [7]. Based 
on this approximation, the complex scattering strength of the 
ellipsoid can be computed using: 
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where θe is the angle of the incident wave with respect to the 
height axis of the ellipsoid,  λ is the wavelength of the radar and 
r is the distance between the phase center of the ellipsoid and 
the radar.  The RCS of the human is then computed by the 
complex sum of σ  from each of the body parts. Since the 
human body is not perfectly metallic, the dielectric property of 
flesh is taken into account for the specified carrier frequency of 
the radar [8]. The RCS is used in the radar range equation to 
derive the time-domain radar returns, x(t).  Note that no 
shadowing or multiple interactions are accounted for in this 
model. Once the return signal is simulated, we compute the 
Doppler spectrogram, χ(t, f) of the motion from the short-time 
Fourier transform (STFT) of x(t): 
 

∫ −−= )4('dte)'tt(h)'t(x)f,t(χ 'ftπ2j  

 
Here, h(t), is the time window used for the STFT operation. It is 
important to note that the animation data is provided at a fixed 
frame rate usually ranging from 60 frames per second to 240 
frames per second.  The data need to be interpolated to provide 

sufficient Doppler bandwidth to avoid aliasing effects. This is 
particularly important at higher radar operating frequencies, 
since the Doppler bandwidth is directly proportional to the 
radar frequency.  The interpolation is implemented by 
introducing spline interpolation to the rotational angle and 
translational position data obtained from the animation files.   

III. SIMULATION RESULTS FOR WALKING, RUNNING AND 
CRAWLING 

Using the techniques discussed above, we simulate the 
radar returns for human walking and running motions using 
BVH data obtained from Sony Computer Entertainment 
America. Similarly, human crawling motion is simulated using 
ASF/AMC data obtained from the CMU Graphics Lab Motion 
Capture Database.  First, we assume the radar to be placed at 
the 3-D coordinate position (-5, 1, 0) m as shown in Fig. 1a. The 
carrier frequency is set at 2.4GHz. The animation data of all the 
three animation models specify the motion of 28 bones in the 
human body at a frame rate of 120 frames per second. This data 
is interpolated to obtain a sampling frequency of 500Hz. In the 
first case, the animated human walks towards the radar for 4s 
and then turns around and walks away from the radar. The 
time-domain radar returns are computed and the Doppler 
spectrogram is generated using a time window of 0.25 seconds 
and is shown in Fig. 1b. The strongest Doppler return is from 
the torso, which is positive when the mover approaches the 
radar and negative when the mover moves away from the radar. 
The motion of the feet and lower legs give rise to the highest 
Doppler returns. The motion shows periodicity that 
corresponds to the uniform stride motion of the human. The 
procedure is next repeated for running motion. In this case, the 
human subject runs around a circular path as shown in Fig. 1c. 
The Doppler spectrogram of this motion is shown in Fig. 1d. 
We observe that the Doppler return of the torso is much higher 
due to the increased speed of the body motion. The 
microDoppler spread is also much higher arising from the 
motions of the different limbs. In particular, it is now possible 
to observe both the front and the back swing of the lower legs 
and feet. At the 3.5s time instant, the Doppler track shows a 
steep change from positive to negative Dopplers. This 
corresponds to the position of the closest approach to the radar, 
as indicated in Fig. 1c. Finally the procedure is repeated for the 
crawling motion of the human subject as shown in Fig. 1e. The 
radar is assumed to be situated at the coordinate position (5, 1, 
0) m. The Doppler spectrogram of the motion, (shown in Fig. 
1f) shows considerable deviation from the spectrograms 
obtained from the walking and running motions. First, the torso 
Doppler is much lower (nearly zero) in this case. Also, the 
microDoppler arising from the legs are lowered and are now 
comparable with the microDoppler from the arms. From a 
detailed analysis of the simulated spectrogram, it is possible to 
infer that the microDoppler of the left / right arm is slightly 
ahead of he microDoppler of the right / left leg.  The results 
indicate that the microDoppler signatures of human motions 
may be useful for identifying different types of motions. 
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Fig.1 (a) Animation model of human walking motion, (b) Doppler spectrogram of walking motion at 2.4GHz carrier frequency, (c) Animation 
model of human running motion, (d) Doppler spectrogram of running motion at 2.4GHz carrier frequency, (e) Animation model of human 
crawling motion and (f) Doppler spectrogram of crawling motion at 2.4GHz carrier frequency. 
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Fig. 2. Doppler spectrograms of measured data at 2.4GHz obtained from (a) walking (b) running and (c) crawling motions. 

IV. COMPARISON AGAINST MEASUREMENT RESULTS 
Next, the three animation motions are replicated in the 

laboratory by a human subject and measurement data are 
collected using a Doppler radar testbed. The testbed consists of 
an RF transmitter operating at 2.4GHz connected to a horn 
antenna. The receiver system consists of a microstrip antenna 
connected to a dual quadrature integrated receiver (Analog 
Devices AD8347). The received signal is amplified, 
downconverted and digitized. The sampling frequency of the 
A/D converter is 500Hz. First, we measure the Doppler returns 
from regular walking motion. The time-domain radar returns 
are processed using equation (4) and the resulting spectrogram 
is shown in Fig. 2a. It is observed that the spectrogram shows 
good correspondence to the spectrogram generated by the 
simulated walking pattern shown in Fig. 1b.  The Doppler 
components from the torso and the lower legs and feet are 
easily discerned.  Next the measurement is made for the 
running motion over a circular track and the resulting 
spectrogram is shown in. Fig.2b. Again, the result is similar to 
the spectrogram results obtained in Fig. 1d. Considerably high 

Doppler returns from the torso and the lower legs are observed.  
Also, the backswing of the legs and feet is more prominent.  
The DC line in the spectrogram comes from the residual clutter 
after the low-pass filter in the radar.  Next, measurements are 
performed for the crawling motion of the human subject. The 
Doppler spectrogram is shown in Fig. 2c which shows good 
agreement with the simulated spectrogram shown in Fig. 1f. 
The spectrogram shows considerable deviations in the 
microDoppler features when compared to the spectrogram of a 
regular walking pattern in Fig. 2a. The Doppler from the body 
is very low due to the slow speed of the motion. Also, the 
microDoppler features of the legs have noticeably reduced and 
are comparable to the microDopplers from the arms. However, 
the two microDoppler features can be distinguished at some 
time instants, since the microDopplers of the arms slightly 
precede the microDopplers from the legs. 

V. ANALYSIS OF ADDITIONAL SIMULATION DATA 
Some additional simulation data are generated and analyzed 

using the same methodology discussed earlier.  Fig. 3 shows the 
simulated Doppler spectrogram from a one-minute duration 
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BVH file.  The specific time intervals from different motions such as accelerated walking, running and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3. Simulated Doppler signatures of human motions over a one-minute duration. 
 
slowing down to a halt are marked in the spectrogram. Such 
data may be analyzed to study motion patterns for use in human 
activity monitoring over long durations.  

The simulation model of the Doppler returns of complex 
human motions is also useful for performing feature-by-feature 
analysis of the microDoppler phenomena. Here, we repeat the 
simulation of the walking motion at 12 GHz and a 600Hz 
sampling frequency. The resulting spectrogram is shown in Fig. 
4. Only a short span (3 seconds) of the spectrogram is shown in 
the figure. It is observed that due to the higher Doppler 
sensitivity at 12 GHz, it is possible to discern distinct 
microDoppler tracks of the different body parts such as the 
torso, lower arms, lower legs and feet. This spectrogram 
contrasts with the result at 2.4 GHz shown in Fig. 1b. The high 
frequency Doppler radar is thus useful for performing detailed 
analysis of the human gait. On the other hand, RF signal 
propagation through walls and obstructions favors the use of a 
lower operating frequency.  Hence if the propagation effect is 
properly taken into account in the electromagnetic modeling, 
such tradeoffs can be studied and optimized in detail.  

The Doppler spectrogram of the human motion is also 
dependent on the orientation of the mover with respect to the 
radar. To illustrate this effect, we next perform the simulation 
of the walking motion for a different position of the radar 
sensor at (0, 1, 5) m as shown in Fig. 4a. The resulting Doppler 
spectrogram is shown in Fig 4b. It is observed that the 
microDoppler returns are much lower in this case due to the low 
radial components of the velocity vectors. Thus, the effect of 
transceiver location on the microDoppler signature can be 
studied.  The exploitation of multi-view information through a 
network of spatially diverse Doppler sensors can also be tested 
without having to first build such a system [9].  

VI. CONCLUSION 
A Doppler radar simulator of complex human motions is 
implemented using virtual reality animation data. The resulting 
spectrograms are compared against measured data obtained 
from a Doppler radar testbed operated in the laboratory. 
Additional simulation data are generated to study the effect of 
frequency and viewing angle.  The simulator will provide us 
with the capability to study detailed Doppler phenomenology 
and to generate training data for algorithm development  
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Fig. 4. Simulated Doppler spectrogram of walking motion at 12GHz 
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Fig. 5. (a) Animation model of human walking motion across the radar’s field of view. (b) Doppler spectrogram of walking motion at 2.4GHz 
carrier frequency 
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