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Abstract—We propose an analytical framework based on stochastic
geometry (SG) formulations to estimate a radar’s detection performance
under generalized discrete clutter conditions. We model the spatial
distribution of discrete clutter scatterers as a homogeneous Poisson point
process and the radar cross-section of each extended scatterer as a
random variable of the Weibull distribution. Using this framework, we
derive a metric called the radar detection coverage probability as a
function of radar parameters such as transmitted power, system noise
temperature and radar bandwidth; and clutter parameters such as
clutter density and mean clutter cross-section. We derive the optimum
radar bandwidth for maximizing this metric under noisy and cluttered
conditions. We also derive the peak transmitted power beyond which
there will be no discernible improvement in radar detection performance
due to clutter limited conditions. When both transmitted power and
bandwidth are fixed, we show how the detection threshold can be
optimized for best performance. We experimentally validate the SG
results with a hybrid of Monte Carlo and full wave electromagnetic solver
based simulations using finite difference time domain (FDTD) techniques.

Index Terms—stochastic geometry, radar detection, FDTD, Monte
Carlo simulations, indoor clutter, Poisson point process

I. INTRODUCTION

Clutter models serve as predictive tools for setting detection
thresholds and calibrating a radar’s performance during operation [1].
Empirical models of clutter from land terrains, sea and precipitation
have been generated, over the decades, using large volumes of
high quality measurement data [2]–[4]. These data are typically
laborious and time consuming to gather. Further, the computation
of the statistical properties - such as higher order moments - from
the data may be challenging [5], [6]. An alternate approach would
be to use computational tools to model clutter returns [7], [8]. Full
wave electromagnetic solvers are deterministic and computationally
expensive especially at microwave and millimeter wave frequencies.
Reliable characterization of radar detection metrics would require
extensive trials of full wave simulations to capture the stochastic
nature of the target and clutter conditions. In particular, we need
to consider multiple target and clutter deployments and, for each
of such realization, several clutter field-of-view and cross-section
instances must be considered. Moreover, this procedure would have to
be repeated for every set of possible radar parameters, e.g., bandwidth
and center frequency. Therefore, such system level simulations are
rarely used to quantify radar detection characteristics. In our paper,
we propose the use of stochastic geometry (SG) to provide analytical
expressions to quantitatively estimate a radar’s detection performance.

In recent years, SG has been explored for a variety of applica-
tions [9]. For example, SG has been extensively studied in the context
of different types of communication systems including cellular net-
works [10], [11], millimeter wave systems [12], [13], MIMO systems
[14], [15], and vehicular networks [16]. The framework has been
exploited for optimizing communication parameters such as data rates
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under the given signal to interference ratio when multiple transmitters
(such as base stations) and receivers (mobile end users) coexist in
the channel. Such an analytical characterization is especially useful
in capturing the diversity in the distribution and strength of the base
station signals in the region of interest.

More recently, SG-based analysis has been extended to radar
scenarios [17]–[21]. In [17], [21], the authors modeled the distribution
of the vehicles, mounted with automotive radars, on the roads as
a Poisson point process, while in [18], [20], the distribution of
pulsed-radar sensors were modeled as a Poisson point process. In
all of the above works, SG techniques are used to characterize
the interference characteristics from multiple radars and analytically
derive the signal to interference and noise ratio (SINR). The radar
detection performance was then quantified on the basis of whether
the SINR was above a pre-determined threshold. In this paper, we
model the locations of discrete clutter scatterers as a Poisson point
process similar to [22]. Then, by employing tools from SG, we
derive the signal to clutter and noise ratio (SCNR) in the region of
interest. The radar detection performance is subsequently quantified
based on whether the SCNR exceeds a pre-determined threshold.
Note that this formulation of the radar detection performance (and
those of the prior SG-based radar works) is fundamentally distinct
from classical radar detection frameworks, such as the Neyman-
Pearson approach, where likelihood ratio tests between alternative and
null hypotheses are performed to generate radar operating curves. In
classical radar detection theory, the objective is usually to derive the
probability density functions (pdf) for signal plus noise and clutter
(or interference) - the alternative hypothesis - and just noise and
clutter (or interference) - the null hypothesis [23]. In contrast, our
SG-based radar work, characterizes the pdf of the SCNR directly.
The main advantage is that SG-based analysis characterizes the
radar performance for all possible spatial configurations of network
entities (in this case, discrete clutter scatterers) without the need for
extensive simulations. Additionally, under suitable assumptions, such
an analysis leads to tractable analytical results which enables the
derivation of system-design insights that are often missed by system-
level simulations [24].

Two typical scenarios where discrete clutter are encountered are
indoor radars [25] and foliage penetration radars [26]. Both these
radars typically operate at carrier frequencies below the X-band
in order to facilitate non-line-of-sight (NLOS) spotting of humans.
Indoor radars encounter significant discrete clutter scatterers such
as furniture, walls, ceilings and floors [27]. Each of these discrete
scatterers consist of multiple scattering centers with significant aspect
angle variation. Many different algorithms and strategies have been
proposed for mitigating both static and dynamic indoor clutter [28]–
[31]. All of these studies focus on specific room layouts and wall
geometries. However, across different indoor environments, the scat-
terers may show considerable variations in their spatial distributions
and sizes. Hence these radars may encounter considerable variations
in the clutter returns during actual deployments. Similarly, in foliage
penetration radar, returns from trees give rise to significant clutter
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[26]. Again, there can be considerable spatial randomness in the
tree’s girth and distribution. In both the cases, the radar performance
is based on the clutter characteristics such as its distribution, the
radar cross-section (RCS) of each clutter scatterer as well as the
interference between the scatterers. Similarly, variations in the target
RCS and position can also affect the radar detection performance.
The radar operating curves, in these scenarios, is directly a function
of the SCNR which is a random function of both target and clutter
parameters. In our preliminary work in [32], we proposed a metric
termed as the radar detection coverage probability (PDC ) that ap-
proximates the fraction of the locations of a target in the region
of interest where SCNR is above a predefined threshold. In that
paper, we assumed an exponential distribution for the RCS of the
discrete clutter and derived PDC for both line-of-sight (LOS) and
NLOS conditions of the target. Radar clutter have been modeled using
Rayleigh, log-normal or Weibull distributions in prior works [33]–
[35]. The log-normal model is typically used when the radar sees land
clutter or sea clutter at low grazing angles, while the Rayleigh model
is used when the amplitude probability distribution of the clutter is
of a limited dynamic range. However, both of these models provide
limiting distributions for most experimentally measured clutter. The
Weibull model, on the other hand, provides a much more generalized
model for radar clutter and is adopted in this work to model the
returns from extended scatterers. We also assume that the noise, target
and clutter statistics do not change appreciably during the coherent
processing interval of the radar. These conditions are generally met
for microwave or millimeter-wave radars. Our contributions in this
paper are summarised below:

1) We model discrete clutter scatterers as a homogeneous Poisson
point process. We provide a comprehensive analysis of PDC
under generalized clutter conditions modeled using the Weibull
function. Here, the exponential and Rayleigh clutter models
are just two specific cases of the generalized Weibull clutter
model. PDC also considers diversity in the RCS of the radar
target, the path loss function, the clutter density and the
mean RCS of the clutter scatterers. The theorems, we offer,
provide physics based insights into the radar performance with
respect to different radar, target and clutter parameters instead
of laborious measurement experiments and computationally
complex simulation studies.

2) The clutter returns that significantly affect the system per-
formance arise from the same range cell occupied by the
target. Greater bandwidth giving rise to small range cells
result in weaker clutter returns. Noise, on the other hand,
increases proportionately to bandwidth. We provide a tractable
method for optimizing the radar bandwidth for maximizing
the radar detection coverage probability under discrete clutter
and Gaussian noise conditions. The optimum radar bandwidth,
derived from our theorem, will increase the likelihood of a
target being detected across the entire region of interest.

3) Under noise limited conditions, increase in transmitted power
results in improved radar detection. However, in clutter limited
scenarios, there is no further improvement in the radar’s per-
formance due to increased returns from the clutter scatterers.
We provide an analytical solution for optimizing the radar
transmitted power. When both the radar power and bandwidth
are fixed, we provide a method to adjust the detection threshold.

4) Finally, all of the existing SG works have validated the results
using Monte Carlo simulations. In this work, we use a hybrid
of finite difference time domain (FDTD) techniques based on
full wave electromagnetic solvers and Monte Carlo simulations
to validate our SG results. To the best of our knowledge, our

Fig. 1: In the stochastic geometry formulation shown above, the
monostatic radar (indicated as a triangle) is at the center of the region
of interest with a single target (indicated as a circle) at a distance
rt from the radar. Discrete clutter scatterers (indicated as crosses)
are modelled as a homogeneous Poisson point process (PPP). They
are distributed uniformly in the region of interest except within the
far-field radius of the radar (rf ).

work is the first to present an experimental validation of SG
results with actual electromagnetic modeling.

The paper is organized as follows. In Section II, we present two
theorems. The first theorem derives the PDC using SG formulations
while the second theorem derives the optimum radar bandwidth for
maximizing PDC . In the following Section III, we describe the
experimental validation using a hybrid of FDTD and Monte Carlo
simulations. Finally, in Section IV, we present the key results and
analyses regarding the radar detection performance as a function of
radar parameters - such as radar bandwidth, transmitted power and
receiver system noise - target parameters (target position, mean target
RCS) and clutter parameters (mean clutter RCS, clutter density and
type of distribution). The scientific inferences from our studies are
summarized in the last section.

Notation We use the following notation in the paper. We denote
random variables by upper-case letters and their realizations or other
deterministic quantities by lower-case letters. We use the bold font
to denote vectors and normal font to denote scalar quantities.

II. THEORY

Consider a monostatic radar of wavelength λc located at the origin
of a two dimensional circular space and shown as a triangle in Fig.
1. The transmitted power from the radar is Ptx. We assume that
the radar consists of directional transmitting and receiving antennas
of gain Gtx(θ) and Grx(θ) respectively where θ is the direction-of-
arrival of a direct path signal from a point scatterer (target or clutter).
Noise at the radar receiver is assumed to be white Gaussian and is
given by Ns = KBTsBW where KB is the Boltzmann constant, Ts
is the system noise temperature and BW is the radar bandwidth. The
bandwidth of the radar also determines the radar range resolution cell
size given by ∆r = c

2BW
where c is the speed of light.

A single target, indicated as a circle in the figure, is assumed to
be present in the channel at a fixed position xt = (rt, θt). Here,
the target’s Euclidean distance from the radar, rt, can range from
rt ∈ (rf ,∞] where rf is the Fraunhofer far-field distance of the
radar antennas. The target azimuth, θt, is fixed such that the target
is assumed to be within the main lobe of the radar where G(θt) =
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Gtx(θt)Grx(θt) = 1. The target radar cross-section (σt) is a random
variable described by the Swerling 1 model with average RCS of
σtavg as shown in

P (σt) =
1

σtavg

exp

(
−σt
σtavg

)
. (1)

This corresponds to the case of a target composed of several scatterers
of approximately equal reflectivities (like a human). Based on the
radar range equation, the received signal at the radar for a single
pulse is:

S(rt) = PtxσtH(rt) . (2)

Here H(rt) is the path loss function which is a function of the
distance between the radar and target as shown below

H(rt) = PLf

(
rf
rt

)2q

, (3)

where q is the path loss coefficient and PLf is the path loss factor
at rf .

Next, we discuss the clutter characteristics. We assume that there
are discrete point scatterers that constitute the clutter (shown as
crosses in the figure). We also assume that the coherent processing
interval of the radar is short compared to the time required for the
clutter statistics to change. These conditions are generally met for
microwave or millimeter-wave radars. These clutter point scatterers
are randomly distributed in the two-dimensional space. The locations
of the random clutter scatterers are modeled as a homogeneous
Poisson point process (PPP), Φ. The number of scatterers in a closed
compact set A is denoted by the intensity measure ρν(A) where ρ
is the clutter density and ν(A) is the size of the illuminated area,
A. Each realization of Φ is denoted by φ and the location of each
clutter point is a random vector, Xc = (Rc, θc). Again, the clutter
points are assumed to be a minimum far-field distance rf away from
the radar. The number of point clutter in each realization follows
the Poisson’s distribution while their distribution is assumed to be
uniform within the region of interest from [rf ,∞) and 0 ≤ θc ≤ 2π.
However, we only focus on the returns from those clutter points
that lie within the same range resolution cell as the target (when
rt − ∆r

2
< Rc < rt + ∆r

2
) since these are the returns that are most

likely to impact the detection. Therefore the mean number of clutter
scatterers within this range cell is given by ρ2πrt∆r. The radar signal
reaching each clutter scatterer is affected by the path loss function
based on a slow fading model denoted asH(Rc). Each discrete clutter
scatterer is considered an extended scatterer and modelled to have a
fluctuating RCS (σc) based on the Weibull model with an average
RCS of σcavg , as shown in

P (σc) =
α

σcavg

(
σc
σcavg

)α−1

exp

(
−
(

σc
σcavg

)α)
, (4)

where α is the shape parameter. When α = 1 the above expression
reduces to the exponential probability distribution (4). When α =
2, the above expression shows the Rayleigh probability distribution.
Thus the total clutter returns at the radar receiver, for each realization
of the PPP, depends on the clutter points within the range resolution
cell of the target and is given by

C =
∑

c∈φ,c∈rt−∆r
2
,rt+ ∆r

2

PtxG(θc)GcσcH(Rc) . (5)

In the above equation, the interference between the clutter returns
from the individual point scatterers is captured by Gc.

There can be significant variations in the clutter returns due to
variation in the number, the distribution and fluctuations in RCS of
the extended clutter scatterer. Similarly, the target returns may vary

due to fluctuations in the target RCS. Therefore, the mean signal to
clutter and noise ratio at the radar for a target at a given rt is

SCNR(rt) = E
σc,Gc,Φ

 PtxσtH(rt)∑
c∈φ

PtxG(θc)GcσcH(Rc) + Ns

 . (6)

Classical radar detection theory considers the radar operating curves
derived from the probability of detection (PD) and probability of false
alarm (PFA). There are many works in literature that have proposed
approximations to the relationships between PD , PFA and SNR.
However, as the scenario becomes more complex, with a large number
of discrete clutter scatterers with considerable variation in their spatial
distribution and cross-sections, the relationship between PD , PFA
and SCNR becomes harder to derive analytically. Instead, we propose
an alternative and simpler metric called the radar detection coverage
probability (PDC ) based on the mean SCNR. Thus PDC is distinct
from both PD and PFA used in classical radar and indirectly includes
the effect of both detections and false alarms. The metric is analogous
to the cellular coverage probability in wireless communications.
There the metric is defined as the probability that a mobile user at
any particular position in the coverage area will experience a signal
to interference and noise ratio above a predefined threshold. The
metric provides a method for evaluating the network performance
while trading off between the benefits of increased capacity with
greater density of mobile base stations with the performance issues
that arise due to interference between the base stations. The metric
also provides a method for optimizing some of the cellular parameters
(such as data rate) for a given SINR. In the case of radar, greater
bandwidth results in a smaller range resolution cell. If we consider
the clutter that arises from the same cell as the target, then a smaller
range cell results in reduced clutter. However, higher bandwidth also
results in greater system noise at the radar receiver. Therefore, we
propose to use the metric PDC to optimize the radar bandwidth with
respect to noise and clutter conditions.

We first define the PDC metric below and provide a analytical
framework for deriving it based on radar, target and clutter conditions.

Definition 1. The radar detection coverage probability (PDC ) is
defined as the probability that the SCNR for a single target at a
Euclidean distance rt from a monostatic radar, is above a predefined
threshold γ: PDC(rt) , P (SCNR(rt) ≥ γ).

Theorem 1. The radar detection coverage probability of a target at
a distance rt from the radar is given by

PDC(rt) = exp

(
−Ns γ

PtxH(rt)σtavg

)
· · ·

exp(−ρrt∆r
∫
φc

(1− J(θc))dφc),

(7)

where

J(θc) =

∫ ∞
0

exp

(
−γG(θc)σc

σtavg

)
P (σc)dσc. (8)

Proof. From (6), we can see that the PDC at a given rt can be written
in terms of the target cross-section in

PDC(rt) = P

σt > Ns γ

PtxH(rt)
+

γ

H(rt)

∑
c∈φ

G(θc)GcσcH(Rc)

 .
(9)
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Due to the exponential distribution of the target RCS in (1), the above
expression becomes

E
σc,Gc,Φ

exp
 −Ns γ

PtxH(rt)σtavg

+
∑
c∈φ

−γG(θc)GcσcH(Rc)

H(rt)σtavg


= exp

(
−Ns γ

PtxH(rt)σtavg

)
I(·)

(10)

In the above expression, the terms within the first exponent - Ns, γ
Ptx, H(rt) and σtavg - are all deterministic. This term encompasses
the signal-to-noise (SNR) ratio with respect to the target returns.
The second exponential term, I(·) shows the stochasticity of the
clutter conditions (clutter cross-section and the PPP distribution of
the clutter points). This term is independent of Ptx and is a function
of the signal-to-clutter ratio (SCR) of the system. I(·) can be further
evaluated as

I(·) = E
σc,Gc,Φ

[∏
c∈Φ

exp

(
−γG(θc)GcσcH(Rc)

H(rt)σtavg

)]
, (11)

since the exponential of sum terms can be written as the product
of exponential terms. Using the probability generating functional
(PGFL) of SG [36], we obtain

I(·) = exp(−ρ
∫ rt+ ∆r

2

rt−∆r
2

∫ 2π

0

(1− · · ·

E
σc,Gc

[
exp

(
−γG(θc)GcσcH(rc)

H(rt)σtavg

)]
)d(~xc))

= exp

(
−ρ
∫ rt+ ∆r

2

rt−∆r
2

∫ 2π

0

(1− J(·)) rcdφcdrc

) (12)

As pointed out before, we only consider the discrete clutter that arise
within the same range cell as the target. The inner expectation term,
J(·), depends on the distribution of σc and the interference term Gc.
Under worst case scenarios, Gc is always 1 and the clutter returns
add. Then

J(·) = E
σc

[
exp

(
−γG(θc)σcH(rc)

H(rt)σtavg

)]
=

∫ ∞
0

exp

(
−γG(θc)σcH(rc)

H(rt)σtavg

)
P (σc)dσc

(13)

Now if the range resolution cell is sufficiently narrow, which is
usually the case for microwave and millimeter wave radars, then
H(rc) ∼ H(rt) when rt − ∆r

2
≤ rc ≤ rt + ∆r

2
. Therefore (13)

becomes independent of rt as shown below in

J(θc) =

∫ ∞
0

exp

(
−γG(θc)σc

σtavg

)
P (σc)dσc. (14)

Substituting this in (12), we obtain

I = exp(−ρrt∆r
∫
φc

(1− J(θc))dφc). (15)

Combining (13), (11) and (10), we prove the theorem.

In the above discussion not all distributions lead to tractable
solutions. For example, the choice of exponential model (Swerling
1/2) model of the target RCS was crucial. The higher order Swerling
3 distribution results in far more challenging mathematical operations
and hence not discussed here. In [32], we discussed the effect of the
gain of the radar antennas on the detection performance. We do not
repeat that discussion here and confine our discussion to isotropic
radar antennas where G(θc) = 1. The J(·) term which is a function
of the clutter cross-section can be computed numerically. However

for two cases, when α = 1 corresponding to exponential distribution
and for α = 2 corresponding to Rayleigh distribution, analytical
expressions for J(·) are derived.

Case 1: When α = 1 for exponential distribution of clutter, with
mean clutter cross-section, σcavg , the J(·) term reduces to

J =
1

1 + ν
(16)

where ν =
γ σcavg

σtavg
. Substituting this expression back in (11), we

obtain

I = exp

(
−2πρ

ν

ν + 1
rt∆r

)
(17)

which can be easily evaluated numerically.
Case 2: When α = 2 for Rayleigh distribution of clutter, the

analytical solution for J is

J = 1−
√
πν

2
eν

2/4erf(
ν

2
), (18)

where erf(·) is the error function. This results in

I = exp
(
−π1.5ρνeν

2/4erf(
ν

2
)rt∆r

)
(19)

Corollary 1.1. In case 1, when ν is much greater than 1 which
corresponds to the situation when σcavg � σtavg , then I becomes
independent of ν. As a result, PDC becomes independent of σcavg .
Similarly, in case 2, the exponential term (eν

2/4) within J becomes
very high when ν is high. As a result I converges to 1 and the PDC
is no longer a function of σcavg . In other words. PDC deteriorates
with increase in σcavg till it asymptotically converges at a limit.

Corollary 1.2. The same effect of PDC versus σcavg is observed
for generalized Weibull clutter parameter α. If we define κ =
−γG(θc)H(rc)

H(rt)
in the generalized J in (13), then the first derivative

of J with respect to σcavg is given by

dJ

d σcavg

=

∫ ∞
0

exp(−κσc) · · ·[
ασα−1

c

σcavg
α
exp

(
−
(

σc
σcavg

)α)( −α
σcavg

α+1
− α

(
σc
σcavg

)α−1
)]

.

(20)

In (20), the terms inside the integral are always negative. Since J is
bounded below and a decreasing function of σcavg , we can conclude
that as σcavg tends to ∞, J will tend to 0. Hence, for high values of
σcavg , PDC is independent of σcavg for generalized Weibull clutter
conditions.

Corollary 1.3. In (7), it is evident that the first exponential term
indicates the effect of the SNR on the radar detection performance
while the second term shows the effect of SCR. Hence increase in the
transmitted power improves the radar detection performance while
the radar operates in the noise limited scenario but has limited
impact on the performance when the radar enters the clutter limited
scenario. For fixed target and clutter conditions, PDC converges to
Iconv with increase in Ptx. The transmitted power at which detection
performance reaches 99% (e−0.01) of the convergence value is given
by

Iconve
−0.01 = exp

(
−Ns γ

Pmaxtx H(rt)σtavg

)
Iconv

=> Pmaxtx =
100 Ns γ

H(rt)σtavg

(21)

The maximum transmitted power is therefore independent of clutter
parameters such as ρ, σcavg and α.
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Corollary 1.4. In the above discussion, the radar detection coverage
probability is provided in terms of the clutter density, ρ. However, in
some experiments, other spatial statistical parameters besides clutter
density may be used. One popular parameter is the average nearest
neighbor distance, r, which is the average distance between the
centroid of a clutter point and its nearest neighboring clutter point.
For a uniform random distribution of the clutter points, the average
nearest neighbor distance is related to the clutter density [37] as
shown below

r =
1

2
√
ρ

(22)

Therefore, the radar detection probability in (7) can be written as

PDC(rt) = exp

(
−Ns γ

PtxH(rt)σtavg

)
· · ·

exp

(
−rt∆r

2r2

∫
φc

(1− J(θc))dφc

) (23)

When the distribution of the clutter points deviate from the uniform
distribution and cluster in some regions, the inhomogenity of the
clutter distribution can be modeled either with the a non-uniform
clutter density (ρ(xc)) or through additional statistics on the average
nearest neighbor distance [37].

Next, we provide a theorem for optimizing the radar BW under
noisy and cluttered conditions.

Theorem 2. For a narrow range resolution cell, the optimum BW
for detecting a Swerling 1 target is given by

BW =

√
πρc(1− J)rtPtxH(rt)σtavg

KBTsγ
. (24)

Proof. For a narrow ∆r and isotropic radar antennas, the integral in
(15) can be reduced to

I(·) = exp (−2πρ(1− J)rt∆r) (25)

Therefore the radar detection probability is a function of BW as
shown in

PDC = exp

(
−KBTsBWγ

PtxH(rt)σtavg

)
exp

(
−2πρ(1− J)rt

c

2BW

)
.

(26)

Higher BW results in greater noise which causes a reduction in the
PDC due to the first exponential term. However increase in BW
also results in a reduced ∆r resulting in lesser clutter returns as seen
in the second exponential term. Therefore, the optimum BW for
maximizing PDC can be determined by taking a natural logarithm
on both sides of (26) as shown below

lnPDC =
−KBTsBWγ

PtxH(rt)σtavg

− 2πρ(1− J)rt
c

2BW
. (27)

The optimum BW , shown in (24), is obtained when the first
derivative of the above expression with respect to BW is equated
to zero.

The optimum BW is shown to be a function of the target distance
from the radar. In many situations it may not possible to change
the radar bandwidth while tracking the target. In those scenarios, it
may be preferable to be able to adjust the threshold γ for a fixed
transmitted power and radar bandwidth BW .

Corollary 2.1. The γ for obtaining the maximum PDC for a given
radar transmitted power and bandwidth for large clutter cross-
sections should be adjusted based on the target distance rt using

γ(rt) =
πρcrtPtxH(rt)σtavg

KBTsBW 2
. (28)

We have already observed from corollaries 1.1 and 1.2 that J
becomes 0 for high σcavg . Therefore, in those scenarios, the above
expression is directly obtained from (24). Note that in the above
expression, the γ is independent of the type of clutter cross-section
distribution (α) and is only dependent on the density of the clutter
scatterers.

III. EXPERIMENTAL VALIDATION

In prior works, the experimental validation of the SG results
were based on Monte Carlo simulations. However, the complete
electromagnetic phenomenology (attenuation, diffraction, scattering)
are not captured through these simulations. Therefore, in this paper,
we use a full wave electromagnetic solver to model the complete radar
propagation phenomenology. However, the computational complexity
of these solvers is dependent on the size of the region of interest
and the wavelength of the source excitation. Also, these solvers
are inherently deterministic and cannot capture the diversity in
radar, target and clutter parameters. Therefore, we use a hybrid of
electromagnetic based modeling based on finite FDTD and Monte
Carlo based simulations to experimentally validate the SG results.

A. Finite Difference Time Domain Simulations

The FDTD technique models the complete propagation physics
between a source and the scatterers in a medium. Many prior
works have used FDTD for modeling indoor clutter [31], [38]–[42].
For computational simplicity, we consider a two-dimensional (2D)
simulation space along the XY plane spanning 20m by 20m. A
narrowband sinusoidal infinitely long, line source at 1 GHz emulating
the monostatic radar is introduced at the center of the space at (0, 0)m.
The space is discretized into grid points that are uniformly spaced
λc
10

apart where λc is the wavelength corresponding to the source
excitation. The entire simulation space is bounded by a perfectly
matched layer (PML) of 2λc thickness.

The distribution of discrete clutter scatterers in the FDTD space
follows the homogeneous PPP. For a given clutter density ρ, we
perform multiple FDTD simulations as shown in Fig.2. Each column
in the figure shows three FDTD simulations for a specific ρ. The
number of scatterers in a FDTD realization follows the Poisson
distribution where the mean number of scatterers across multiple
FDTD simulations is ρ × A where A = 400 m2 is the area of
the simulation space. In each FDTD simulation, the scatterers are
distributed uniformly about the simulation space except within a
radius of rf = 3m around the source. Each scatterer is modelled as
an infinitely long dielectric cylinder of dielectric constant εr = 7.1
and radius rg . The RCS, σc, of each of the clutter scatterers is a
random variable drawn from the Weibull distribution of mean cross-
section, σcavg = 0.8m2 and shape parameter α = 1 (or 2) as given in
(4). Using modal analysis, the 2D RCS of an infinitely long cylinder
is given in terms of Bessel and Hankel functions as shown in

σc =
16

k

[
−J0(krg)

H1
0(krg)

+

N∑
n=1

2(−1)n+1 Jn(krg)

H1
n(krg)

]2

, (29)

where k = 2π
√
εr/λ and N is the number of modes [43]. The unit

of the 2D RCS is in meters rather than square-meters (3D). Based
on the above equation, a look up table is formed between rg and σc
using a sufficiently large value of N (50, in our case) when σc has
converged. Using this look up table, rg is estimated for each σc of
the scatterer. We further approximate the cylinders to have a square
shaped longitudinal cross-section for simplicity.

The FDTD models the time-domain transverse electric field,
Ez(~r, t), in the two-dimensional grid space (~r). Through Fourier
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Fig. 2: Two-dimensional FDTD simulation space (20× 20 m) with point clutter scatterers of εr = 7.1 and mean RCS σcavg = 0.8 m2 for
three different clutter densities: first, second and third columns correspond to ρ = 0.1, 0.08, 0.05 1/m2 respectively. The clutter scatterers
are distributed uniformly in the simulation space while the RCS of the clutter scatterers follows the Weibull distribution with α = 1.

transform, we obtain the corresponding electric field in frequency
domain, Ez(~r, fc) for fc = 1 GHz. A second FDTD simulation
is run in free space conditions without the presence of any of the
scatterers using the same source excitation. Again, the resulting time-
domain free space electric field is Fourier transformed to obtain the
corresponding frequency-domain response at all the grid positions
(Efsz (~r, fc)). Then, the two-way path loss, H(r), at a distance r
from the source is obtained from the ratio of the mean of the square
of electric field at a distance r from the source and the mean of
the square of the corresponding electric field obtained in free space
conditions, as shown in

H(r) =
λc

(2π)3r2

 ∮ 2π

φ=0

∣∣Ez(~r, fc)2
∣∣ dφ∮ 2π

φ=0

∣∣∣Efsz (~r, fc)2

∣∣∣ dφ
2

. (30)

The denominator term essentially normalizes the source excitation
in the path loss factor. The power factor of 4 in (30) accounts for
the two-way propagation path and includes the effects of propagation
through dielectric scatterers, diffraction about the edges of the scatter-
ers and multipath reflections. Note that the path loss factor estimated
from this simulation study corresponds to 2D cylindrical waves rather
than 3D spherical waves that correspond to the usual radar scenario.
Hence, the path loss decays at a rate of 1/m (2D) rather than 1/m2

(3D). However, in our SG formulations, we are only concerned with
the relative power decay from rf to r and hence the difference in the
phase front in 2D and 3D scenarios is ignored. In (30), we estimated
H(r) from the mean power decay corresponding to a circle of radius

r around the source. This is further averaged across multiple FDTD
simulations to obtain a fairly good generalized estimate of H(r) for
any given ρ and σcavg . We integrate these path loss estimates with
Monte Carlo simulations to experimentally validate the stochastic
geometry results.

B. Monte Carlo Simulations

The SG results are validated through Monte Carlo simulations.
The following parameters are fixed: Ptx = 30 dBm, Ns = 300K,
threshold γ = 1 and carrier frequency of 1 GHz are fixed. The target
cross-section, σt, in each trial is drawn from the Swerling 1 model in
(1) with a mean of σtavg = 0.8 m2 while the clutter cross-section of
each scatterer is varied based on the Weibull model in (4) with α = 2
and σcavg = 0.8 m2. We consider three cases of clutter densities: ρ =
0.1, 0.08, 0.05 /m2. For each case, the number of clutter scatterers
in each trial is drawn from the Poisson distribution where the mean
is ρ × A where A is 400m2. We only consider the clutter returns
from those that fall within the same range cell as the target. The size
of the range cell is determined from the radar bandwidth BW . The
path loss factor for both target and clutter scatterers at any position
~r is obtained from the FDTD simulations described above. A total
of 10000 trials are conducted to obtain S and C based on (2) and
(5) respectively. The mean PDC is computed based on definition 1
and compared with the stochastic geometry solutions obtained from
(7). The PDC is plotted for different BW and ρ. The results are
presented in Fig.3 for α = 1 and α = 2. The result shows an exact
match between FDTD and SG results for α = 1 (Fig.3a) and a very
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(a) PDC vs. BW, ρ for α = 1

(b) PDC vs. BW, ρ for α = 2

Fig. 3: FDTD and SG-based estimations of PDC for different BW
and ρ when Ptx = 30 dBm, Ns = 35 K, σtavg = σcavg = 0.8 m2,
q = 2 for SG.

close match when α = 2 (Fig. 3b). In each figure, we show the values
for the different cases of ρ. The results show that the SG framework is
able to accurately estimate the radar’s detection performance without
the computational complexity of the FDTD framework. Note that the
FDTD results have been confined to a region of 20 × 20m for a
source of 1 GHz. The computation complexity would considerably
increase for greater rt and higher source frequencies due to smaller
grid dimensions. The small variation in the results in Fig.3b may be
attributed to the fact that the FDTD simulations do not have a circular
cross-section as assumed. Second, we have assumed a path loss factor
of q = 2 in the SG formulations whereas the actual propagation
conditions may have a slightly different q due to multipath scattering.
Third, the FDTD simulation is inherently deterministic. We estimate
the mean path loss factor by taking the average of a radius r around
the source. We also average across three simulations. However, the
resulting estimate of the path loss factor may still not capture the
stochasticity inherent in the radar propagation conditions.

IV. RESULTS

In this section, we present the results obtained from the two
theorems and their corollaries. The first theorem shows the relation-
ship between the newly proposed metric - radar detection coverage
probability - and radar, target and clutter parameters. The second
theorem shows the optimum radar bandwidth under both noisy and
cluttered conditions. In all of the cases, the radar antennas are
assumed to be isotropic (Grx = Gtx = 0) dBi with a minimum
far-field distance of rf = 3 m, while the carrier frequency is fixed
at 1 GHz. The mean target cross section, σtavg , is assumed to be 1

TABLE I: Radar, Clutter and Target Parameters for Stochastic Ge-
ometry Formulations

Radar Parameters Values
Carrier frequency (fc) 1 GHz

Transmitted power (Ptx) 0 to 30 dBm
Noise temperature (Ns) 300 K to 1500 K
Radar bandwidth (BW ) 0.1 to 2 GHz

Antenna gain (G) 0 dBi
Target Parameters Values

Average target RCS (σtavg ) 1 m2

Target distance (rt) 5 to 50m
Clutter Parameters Values

Average clutter cross-section (σcavg ) 0.5 to 5 m2

Weibull clutter shape parameter (α) 1 to 2 (no units)
Clutter density (ρ) 0.003 1/m2

Path loss exponent (q) 2 to 4 (no units)
SCNR threshold (γ) 1

m2. All the radar parameters - Ptx, Ns and BW - can vary and the
ranges of their variation are listed in Table.I along with target and
clutter parameters.

A. Analysis of Results from Theorem 1

First, we present PDC as a function of target distance (rt) from the
radar for different types of clutter in Fig.4a. For this case, Ptx is 30
dBm, Ns is 300 K and BW is 0.1 GHz. Both σcavg = σtavg = 1m2

while q = 2. We plot the variation of PDC for different values of
Weibull shape parameter, α. When α = 1, the RCS of discrete clutter
scatterers are of exponential distribution while α = 2 corresponds to
scatterers with RCS of Rayleigh distribution. We observe that PDC
falls with increase in rt. This is because the increase in path loss
term H(rt) results in the fall of the SNR (first exponential term) in
(7). The SCR in the second exponential term is less impacted by
H(rt) since the clutter scatterers that fall within the same range cell
as the target are similarly impacted by path loss. There is a slight
increase in the clutter returns due to increase in clutter area size
(2πrt∆r). The detection performance deteriorates slightly for higher
values of α. The exponential distribution provides the upper bound of
the performance while the Rayleigh distribution provides the lower
bound.

Next, we use the same parameters that were used in the previous
case. However, this time α is fixed at 1 while q is varied from 2
to 4 in Fig.4b. Higher values of q incorporate multipath scattering
effects into the path loss function H(·). As expected, higher q results
in significant deterioration in the radar detection performance.

Next, we examine the effect of increasing Ptx on PDC in Fig.4c
for different values of α. Here, the distance of the target from the
radar is fixed at rt =10 m. Ns and BW are fixed at 300 K and 0.1
GHz respectively. Again, as before, σcavg = σtavg = 1m2 while q is
2. As mentioned earlier, the first term in (7) shows the effect of SNR
on the radar detection performance. Here, as the Ptx increases, the
SNR improves resulting in higher detection performance. However,
as pointed out in Corollary 1.3, when we enter the clutter limited
scenario, increase in Ptx does not improve the performance of the
radar since clutter returns proportionately increase. As a result, PDC
converges. The dotted line in the figure shows the Ptx value for which
the PDC converges. This was derived from the analytical expression
in corollary 1.3 in (21). Note that the maximum power is independent
of α and other clutter related terms.

Next, we run a similar study where we analyze the effect of the
radar bandwidth on PDC . The results are presented in Fig.4d for
different α. In this scenario, Ptx is 30 dBm, Ns is 1500K while rt is
10m and q is 2. All the other parameters are fixed as before except
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(a) PDC vs. rt, α (b) PDC vs. rt, q, α = 1 (c) PDC vs. Ptx, α

(d) PDC vs. BW,α, Ns = 1500 K, (e) PDC vs. ρ, α (f) PDC vs. σcavg , α

Fig. 4: Theorem 1 results: Variation of PDC for different parameters when rf = 3 m, σtavg = 1 m2, ρ = 0.003 /m2. Ptx = 30 dBm for
all figures except (c). q = 2 in all figures except (b). rt = 10 m for figures (c)-(f). BW = 0.1 GHz, Ns = 300 K, in all figures except (d).
σcavg = 1 m2 in all figures except (f).

for BW which is varied up to 1 GHz. In a clutter limited scenario,
higher BW results in smaller range cells resulting in fewer clutter
scatterers for a fixed clutter density. Hence, we have higher signal-to-
clutter (SCR) levels and PDC . On the other hand, in a noise limited
scenario, increase in BW lowers the SNR and deteriorates the PDC .
Therefore, in the figure, we observe an optimum bandwidth where
we obtain the peak PDC . The two dotted lines indicate the optimum
bandwidth derived from Theorem 2 (23), for α = 1 (red left line)
and α = 2 (blue right line). This result shows the correspondence
between theorems 1 and 2. The result shows PDC improving with
increase in BW (due to fall in noise) up to the optimum value after
which the PDC falls slightly for higher values of BW (due to fall
in clutter returns).

Figure.4e shows the radar detection performance as a function of
the clutter density (ρ) for a fixed target distance at rt = 10m. All
the other radar parameters such as noise, bandwidth and transmitted
power are fixed. We observe that, as expected, the increase in clutter
density causes a fall in the SCR term in the second exponential term
of (7). Finally, we consider the effect of σcavg on PDC in Fig.4f.
Based on the figure we observe that the PDC does fall up to a point
with increase in σcavg . However, it asymptotically converges after
a point. In other words, the increase in σcavg does not affect PDC
beyond a point. This also concurs with the Corollaries 1.1 and 1.2.

B. Analysis of Results from Theorem 2

Now, we discuss the results obtained from the second theorem
based on Fig.5. A radar’s SNR falls with increase in radar bandwidth
due to noise. But the SCR improves due to smaller range cells

and fewer clutter scatterers. The optimum bandwidth is identified
by Theorem 2 by considering both.

First, we show how the optimum radar bandwidth derived from
(23) varies as a function of target distance rt in Fig.5a. Here, Ptx, Ns,
ρ and q are fixed at 30 dBm, 300 K, 0.003 1/m2 and 2 respectively.
As we go farther, we observe that the optimum bandwidth reduces
till it begins to converge. However, the variation in bandwidth is not
considerable for high values of ranges. Therefore, it may be fairly
easy to select an optimum bandwidth based on half the maximum
unambiguous range of the radar field of view. The variation with
respect to the clutter shape parameter is not very significant.

In Fig.5b, we observe that the BW is far more sensitive to the
clutter density ρ. Here, all the other parameters except ρ are fixed with
the same values as the previous case. Higher clutter density requires
a higher bandwidth or a smaller range cell size in order to balance
the increase in noise. The returns are sensitive to the Weibull shape
parameter. Slightly higher bandwidths are required for the Rayleigh
distribution (α = 2) compared to the exponential distribution (α =
1).

In corollary 1.1, we observed that J becomes negligible for higher
values of σcavg . This is also observed in Fig.5c. As a result, we
observe how the optimum bandwidth for α = 1 and α = 2 begin to
converge to the same value in Fig.5d. This supports the corollary 2.1
where we noted that the optimum bandwidth becomes independent
of the type of clutter distribution for high σcavg .

As a result, we can tune the threshold function γ for a given
transmitted power Ptx and radar bandwidth BW for obtaining the
maximum PDC while tracking a target at a specific target distance
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(a) BW vs. rt, α. (b) BW vs. ρ, α. (c) J vs. σcavg , α

(d) BW versus σcavg , α (e) γ vs. rt, Ptx (f) γ versus rt, Ptx

Fig. 5: Theorem 2 results: Optimum bandwidth for obtaining maximum PDC when Ns = 300 K, q = 2, σtavg = 1 m2. ρ fixed at 0.003
1/m2 in all cases except (b). γ fixed at 1 in all cases except (e) and (f).

of rt. Fig.5e shows the ideal γ as a function of rt for different
Ptx while keeping all other parameters fixed. We observe that γ has
to be reduced as we go farther from the radar to compensate for
the path loss factor. Greater transmitted powers result in higher γ
as expected. Fig.5f shows how to tune γ for different bandwidths.
Higher bandwidths require lower γ.

V. CONCLUSION

We derived a metric - radar detection coverage probability (PDC ) -
using SG techniques for evaluating the radar’s detection performance
under generalized discrete clutter conditions. The point clutter distri-
bution were modeled as a homogeneous Poisson point process. The
RCS of the target and clutter scatterers were modelled as random
variables of Swerling-1 and Weibull distributions respectively. We
evaluated the radar’s performance for different radar, target and clutter
parameters. Our studies provide several insights into the performance
of the radar under noisy and cluttered conditions. We list some of
these below:

• The radar detection performance is best for the exponential
distribution of the clutter cross-section (when Weibull shape
parameter α = 1) and worst for the Rayleigh distribution
(α = 1) for similar clutter densities and mean clutter RCS.

• Increase in radar transmitted power improves the detection
performance in noise limited scenarios. However, beyond a point
there is no further discernible improvement since we enter the
clutter limited scenario. We provide the analytical method to
estimate the peak transmitted power at which the radar detection
performance reaches its asymptotic maximum.

• Large radar bandwidths result in increase in noise but lesser
clutter returns due to smaller range cell size. We derive the
optimum radar bandwidth for maximizing PDC under noisy and
cluttered conditions.

• We show a method for optimizing the detection threshold for
maximizing PDC for a fixed transmitted power and bandwidth.

Our results are experimentally validated with a hybrid of FDTD and
Monte Carlo simulations. The FDTD simulations are used to model
the path loss between the radar and a scatterer while the Monte Carlo
simulations consider the diversity in the RCS of the target and clutter
scatterers.
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