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Frontal radar imaging of human activities may be useful in
certain applications, such as through-wall surveillance, where
cameras and x-ray sensors cannot be deployed. High-resolution
radar images are currently obtained using electrically large antenna
apertures operating at high frequencies. However, high frequencies
are heavily attenuated by most walls. Also, the implementation of a
radar with lots of array elements and associated data acquisition
channels is costly and complex. In this paper, we propose methods to
generate high-resolution Doppler-enhanced radar images of moving
humans at low carrier frequencies with limited number of antenna
elements. When a human moves, different body parts give rise to
distinct Doppler returns. The key feature of our method is to
dynamically resolve multiple body parts of the human across three
dimensions: Doppler, azimuth, and elevation. The additional
Doppler dimension allows us to relax the resolution requirements in
terms of the carrier frequency and number of array elements across
the other dimensions. We further reduce the number of array
elements below the Nyquist limits by incorporating compressed
sensing principles into two-dimensional beamforming because
compressed sensing is particularly suited for solving certain types of
under-resolved problems. We test our technique on simulated
electromagnetic radar scattered data from a moving human for
different radar configurations. We also study the robustness of the
proposed technique to noise.
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I. INTRODUCTION

Radars are uniquely suited for sensing humans for law
enforcement, security and surveillance operations,
biomedical studies, and sports. Both narrowband and
ultrawideband (UWB) radars have been investigated and
developed for detecting and tracking humans in
non-line-of-sight conditions, where cameras and x-ray
sensors cannot be deployed [1–5]. UWB radars provide
high-range resolution profiles of humans, while Doppler
radars provide micro-Doppler information regarding
different human activities [6]. However, untrained radar
operators may find both of these signatures difficult to
interpret. This limitation can be partially overcome with
the assistance of sophisticated target recognition
algorithms based on supervised learning techniques
[7–12]. Such algorithms involve the challenges of
generating large training databases under a variety of
operating conditions. Another approach would be to
directly generate frontal radar images of humans because
frontal views convey more information regarding different
human activities than top views. Radar images, however,
unlike optic images, are of very low resolution because
they are limited by the carrier frequency and the size of the
radar aperture. Most walls heavily attenuate
high-frequency radar signals. Also, electrically large
apertures comprising many array elements are required to
obtain high resolution [13]. Such a radar system with
multiple antenna elements, each with an associated data
acquisition channel, is both costly and complex to
implement. Synthetic aperture (SAR) techniques are also
not suitable for realizing such large apertures because
human motions may significantly degrade SAR images. In
this paper, we propose using a combination of Doppler
processing with compressed sensing- (CS) based array
processing to image moving humans. Doppler processing
allows us to reduce the carrier frequency, while CS
enables two-dimensional (2D) beamforming with a
limited number of array elements.

Continuous-wave Doppler radars are inherently
suitable for imaging moving humans for multiple reasons.
First, stationary background clutter is suppressed while
using continuous-wave signals. Second, Doppler signals
are far more robust to multipath caused by walls and floors
than UWB waveforms [14]. Finally, because humans are
nonrigid moving targets, the movements of different body
parts give rise to a distinct micro-Doppler [6]. Lin, in [15],
exploited the last property towards imaging humans using
a three-element Doppler radar. The different body parts
were first resolved on the basis of the Doppler. Then, the
azimuth and elevation position of each body part with a
distinct Doppler was estimated using 2D interferometry.
This low-cost solution is effective only when the Doppler
of the different body parts is sufficiently well resolved. In
our paper, we combine Doppler processing with 2D array
processing to dynamically resolve the different scatterers
on the human body in three dimensions, based on their
distinct Doppler, azimuth, and elevation positions.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 51, NO. 2 APRIL 2015 1279

Authorized licensed use limited to: Indraprastha Institute of Information Technology. Downloaded on July 21,2021 at 14:04:14 UTC from IEEE Xplore.  Restrictions apply. 



The resolution in the azimuth-elevation plane or front
view of a spatially large radar target, such as a human, is
limited by the size of the 2D array aperture. The number
of array elements becomes very large if the elements are
closely spaced to allow for beam scanning. CS is a signal
processing technique in which the number of
measurements required to recover an image (or any signal)
can be reduced below the Nyquist limits, if the image is
inherently compressible in some domain [16, 17]. CS has
been successfully applied in several image processing and
magnetic resonance imaging applications [18, 19]. More
recently, the radar community has applied CS for reducing
the data acquisition bandwidths associated with SAR and
inverse SAR radar applications [20–33]. In [34], CS was
used for imaging targets behind walls by using wideband
signals. CS has also been used for reducing the number of
sensors in a multiple-input multiple-output radar system
[35, 36]. In this paper, we will introduce CS to 2D array
processing to generate frontal images of humans. CS
enables us to reduce the number of array elements below
the Nyquist limits, though the size of the aperture remains
the same.

In Section II, we present the simulation model of the
electromagnetic scattering from moving humans on a
Doppler radar system. We also study the limitations of
directly imaging humans using 2D array processing. In
Section III, we integrate CS principles with array
processing to reduce the number of array elements
required to recover the radar image. We also examine
noise effects on the image reconstruction capabilities of
the algorithm. In Section IV, we combine Doppler
processing with array processing to image humans at low
carrier frequencies. Finally in Section V, we combine
Doppler processing and CS-based beamforming to
generate high-resolution images of a moving human. We
carry out noise analysis to test the robustness of the
proposed algorithm.

II. SIMULATION OF 2D BEAMFORMING

We simulate Doppler radar data from moving humans
by combining computer animation data, derived from
motion capture technology, with electromagnetic
primitive-based modeling of human body parts [14]. We
consider a realistic motion where a human spreads his
arms wide at a distance of 10 m, along the X axis, before a
continuous-wave radar. The human is 1.5 m tall (head to
foot), along the Y axis, and 1.5 m wide (right to left hand),
along the Z axis. The arms, legs, torso, and head are
modeled as primitives, such as spheres and ellipsoids. The
human is, therefore, a complex target, with multiple point
scatterers corresponding to the phase centers of these
primitives. We model the radar with a 2D uniform planar
transceiver array, with [N × N] elements spaced half a
wavelength apart in both dimensions, as shown in Fig. 1.
The array is placed in the YZ plane with the central
element located at [0, 1, 1] m. The antenna elements are
isotropic. The simulation model enables the

Fig. 1. Simulation model of moving human before Doppler radar with
2D uniform planar array.

parametrization of the radar carrier frequency, the number
of elements in the array, and the sampling frequency of the
data acquisition system. We generate the front view radar
image of the human at each time instant, Xθ ,φ(t), from the
instantaneous [N × N] measurement vector at the
transceiver array, Y(t), using the inverse of

Y (t) = FXθ,φ(t), (1)

where F is the 2D Fourier transform or the beamforming
function. The image is a function of spherical coordinates,
azimuth (φ) and elevation (θ).

A. Results and Inferences

First, we consider a case in which the carrier frequency
is set at 30 GHz and an antenna array with [80 × 80]
elements. The choice of the carrier frequency is dictated by
a trade-off between two factors: one, the higher the carrier
frequency, the greater the resolution of the image, and the
far-field radius of the radar reduces; two, high-carrier
frequencies are unsuitable for through-wall purposes.
Also, high-frequency radars are usually more expensive.
Therefore, we have selected the lowest-carrier frequency
that would generate an image with desired resolution
characteristics. The antenna aperture is [40 × 40 cm] when
the elements are spaced half a wavelength apart. The
choice of radar parameters (carrier frequency, number of
elements, and size of aperture) are dictated by a trade-off
between the desired resolution characteristics in the radar
image and the cost and complexity of the radar. This is
illustrated in the following three cases. Fig. 2(a) shows the
front-view radar image of the human. The figure has not
been reformatted to Cartesian coordinates. We can identify
the head, torso, arms, and legs of the human, even though
the resolution is poor compared with an optic image. Note
that the human is not in the far-field region of the radar
even with the high-carrier frequency. Next, the number of
elements in each dimension is reduced by a factor of four,
i.e., the transceiver is set with a [20 × 20] array, while the
spacing between the elements remains the same.
Therefore, the aperture size is [10 × 10 cm]. Fig. 2(b)
shows the front-view image of the human at the same time
instant as the previous case. The reduction in the size of
the aperture (and the number of elements) has severely
degraded the quality of the image due to reduced
resolution. Next, we reduce the carrier frequency to
7.5 GHz, while the antenna array is modified to an
[80 × 80] array of [160 × 160 cm] size. The front-view
image is shown in Fig. 2(c). Despite the increase in
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Fig. 2. Frontal radar image of human captured by (a) [80 × 80] array
configuration operating at 30 GHz; (b) [20 × 20] array configuration

operating at 30 GHz; and (c) [80 × 80] array configuration operating at
7.5 GHz.

aperture size, the reduction of the carrier frequency by a
factor of four has severely degraded the image, because
2D array processing through Fourier transform is ideally
meant only for far-field data. Near-field distortions
become dominant at lower carrier frequencies. The results
show that the resolution of the image is a function of both
the carrier frequency and the number of antenna elements.
A radar operating at a high frequency with a large number
of antenna elements, each with an associated data
acquisition channel, would be costly to build and
ineffective in through-wall scenarios. Therefore, we
examine methods to reduce both the frequency and the
number of elements in the following sections.

III. ARRAY PROCESSING WITH CS

In this section, we briefly describe how CS principles
can be used for realizing high-resolution radar images of
human activities, with a subset of elements from an

[N × N] array. Preliminary studies of imaging spatially
large targets with CS-based array processing were
presented in [37]. Our objective is to solve the inverse
problem defined in (1). The problem becomes an
underdetermined set of equations, when the number of
array elements is below the resolution requirements of the
image to be captured. If the choice of the subset of
elements is random, while the size of the aperture remains
the same, then F in (1) can be modified to RF, where R is a
random matrix of size [N × N], with values of either ones
or zeros. This implies that measurements are taken at a
random subset of the elements of the antenna array. CS is
especially suited for solving underdetermined problems,
provided two conditions are satisfied.

1) The image that is to be reconstructed is sparse in
some basis;

2) The measurement basis (in this case random
Fourier) must be incoherent, with respect to the
sparsifying basis.

We represent the image recovered from CS, Xc
θ,φ, for each

frame as (2)

α(t) = ψXc
θ,φ(t), (2)

where ψ is the Dirac/identity basis that transforms Xc
θ,φ(t)

to α (t). The choice of Dirac as the sparsifying basis is
suitable for our problem because the incoherence between
Dirac and the Fourier basis is maximum for all possible
pairs of bases. Second, the radar image is quite sparse in
the Dirac spatial basis, as shown in Fig. 2(a). Thus, the
measurement vector at any time instant can be represented
as

Y (t) = RFψ−1α(t). (3)

Because α is sparse, we solve (3) for α using l1
minimization techniques, described in [38]. Finally, the
image, Xc

θ,φ, is reconstructed from the inverse of (2).

A. Results and Inferences

We choose a random 50% subset (3200 elements) of
the total number of elements of an [80 × 80] array
operating at 30 GHz. Using CS-based array processing,
the radar image is recovered and presented in Fig. 3(a).
When we compare this figure with Fig. 2(a), we observe
that the quality of the image is retained, despite the 50%
reduction in the number of array elements. Fig. 3(b) shows
the radar image obtained when we use a random 10%
subset (640 elements) of the total number of elements of
the [80 × 80] array. Here, we observe image recovery
errors in the form of a noisy background.

We quantitatively studied the effectiveness of CS for
three uniform planar array configurations consisting of
[80 × 80] elements, [20 × 20] elements, and [5 × 5]
elements. All three configurations operate at 30 GHz, and
the elements are spaced half a wavelength apart. Fig. 4(a)
shows the normalized mean square error (NMSE) of
image reconstruction as a function of the degree of
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Fig. 3. Frontal radar image of human captured by combined CS and
array processing using (a) 50% of sensors; (b) 10% of sensors of

[80 × 80] array configuration operating at 30 GHz.

Fig. 4. NMSE of image recovery while using CS with array processing
versus degree of compression, as function of (a) [N × N] size of array

configuration and (b) SNR of radar system.

compression of the number of elements of the arrays. The
NMSE for each frame is defined by

NMSE(%) = |Xc
θ,φ(t) − Xθ,φ(t)|2

|Xθ,φ(t)|2 × 100. (4)

Here, Xθ ,φ is the image recovered using array processing
with all the elements in the antenna array, as described in
(1). Xc

θ,φ is the image recovered by using a reduced
number (CS percentage) of elements, as described in (3).
The error is computed and averaged over 50 frames and
shown in Fig. 4(a). We observe that the reconstruction
error increases for all three cases, as we reduce the number
of elements (or increase the compression). We also
observe that for the same degree of compression, the error
is much lower for the [80 × 80] array followed by the
[20 × 20] and [5 × 5] arrays. Therefore, we conclude that
the effectiveness of CS solutions deteriorate for small
array sizes.

Next, we study the robustness of CS-based array
processing to noise. Additive white Gaussian noise is
included in the measurement data Y(t), and the NMSE is
computed for an [80 × 80] radar system operating at
30 GHz. The NMSE for each frame is defined by

NMSE(%) = |Xnc
θ,φ(t) − Xc

θ,φ(t)|2
|Xc

θ,φ(t)|2 × 100, (5)

where Xnc
θ,φ is the image recovered from noisy

measurements for the same degree of compression utilized
for retrieving Xc

θ,φ from noiseless measurement data.
Fig. 4(b) shows the NMSE as a function of the degree of
compression for three signal-to-noise ratios (SNR). We
observe that the error increases with higher noise levels.
However, the overall performance of the algorithm is
robust to noise (error below 25%) and deteriorates only
when the SNR is 10 dB or worse.

In all of these results, the range of the target with
respect to the radar is fixed. However, if the target’s range
with respect to the radar increases, the 2D beamforming
will become increasingly linear, and we can expect less
distortions due to near-field effects. However, the actual
size of the image with respect to the aperture will reduce.
This will have two consequences: first, the resolution
requirements will increase, which implies we will need
larger radar apertures; and, second, the sparsity of the
image in the radar aperture will increase, which lends itself
to further compression of the number of antenna elements.

IV. JOINT DOPPLER AND ARRAY PROCESSING

Humans are nonrigid targets that rarely remain still.
Different body parts of humans give rise to distinct
micro-Doppler components that are best represented in the
joint time-frequency space through the short-time Fourier
transform (STFT) [6, 39]. This is shown in

χ(f, t) =
∫

Y (τ )h(t − τ )e−j2πf τ dτ . (6)
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Here, χ(f, t) is a vector of size [N × N] that consists of the
joint time-frequency representation of the measured data
at the array, and h(t) is a moving time window with fixed
width. Array processing or 2D beamforming is carried out
for each Doppler frequency, as shown in

Wθ,φ(f, t) = F−1χ(f, t). (7)

Therefore, the measurement data have been effectively
resolved in three dimensions: Doppler ( f ), elevation, and
azimuth for each time interval. The radar image of the
human for time t is realized from the coherent sum of
point-spread responses from the peak scatterers, Wm

θm,φm,

for each Doppler:

Xd
θ,φ(t) = 	f Wm

θm,φm(f, t)H (θ − θm, φ − φm). (8)

We choose a high-resolution point-spread function,
H(θ ,φ), in the 2D space centered at the positions (θm,φm),
corresponding to the peak scatterer for each Doppler
frequency. Note that Xd

θ,φ(t), derived from (8), is different
from the image, Xθ ,φ(t), derived from (1), in the following
ways:

1) Imaging using combined Doppler processing and
2D beamforming is effective only when carried out on
targets with significant radial velocity components. There
may be some complex motions in which all the different
body parts of the human may not move, for example,
when a human is standing still but waving his hand. In
those cases, Doppler-based imaging will be restricted only
to those body parts that are moving. Likewise, the Doppler
is maximum when the motions are radial with respect to
the radar.

2) Since the point scatterers on the complex human
target are resolved across three dimensions in (8) rather
than two dimensions as in (1), the resolution criteria for
imaging in terms of the number of array elements and the
carrier frequency of the radar may be relaxed.

3) The positions and velocities of the body parts of the
human may not be fixed during the entire dwell time of the
STFT. This may result in some blurring of the image.

4) There may be significant overlap in the
micro-Doppler of the different body parts during some
time intervals that result in the degradation of the quality
of the images.

A. Results and Inferences

We test our algorithm on simulated radar scattered data
from a human walking in a straight line from an initial
standoff distance of 10 m towards a Doppler radar for 3 s.
The human motion is derived from motion capture data
and hence is realistic. The average speed of the human is
1.4 m/s. These data are different from the data used in the
previous two sections when human motion had negligible
radial motions and hence very low micro-Doppler. We
consider a walking motion because this is, perhaps, one of
the more common regularized motions undertaken by
humans in indoor environments. Also, when a human
walks, most body parts move at distinct radial velocities,

Fig. 5. Frontal radar image of human captured by combined Doppler
processing and array processing using (a) [20 × 20] array configuration
at 7.5 GHz; (b) [5 × 5] array configuration at 7.5 GHz; and (c) [20 × 20]

array configuration at 1.875 GHz.

except for the head, which moves at the same velocity as
the torso. Hence, we can, potentially, image the entire
human body. The size of the human remains the same as
the previous case discussed in Section II.A. The radar
consists of a uniform planar array of [20 × 20] elements,
operating at 7.5 GHz, where the elements are spaced half a
wavelength apart. The different scatterers on the body are
first resolved along the Doppler dimension through the
STFT with a moving time window of 0.05 s using (6).
Next, the azimuth and elevation positions are determined
for each Doppler using 2D array processing (7). The peak
scatterers for every Doppler are coherently added to
generate the radar image shown in Fig. 5(a). We are able
to identify the arms, legs, and the torso of the human. It is
difficult to identify the head because there is considerable
overlap between the micro-Doppler of the head and torso.
The quality of the image is superior to Figs. 2(b), 2(c).
This implies that we are able to successfully image the
human, despite significantly relaxing the resolution
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criteria. In other words, a good-quality image is generated
though the operating frequency, and the number of array
elements across each dimension have been reduced by a
factor of four. Note that these results are obtained when
the human is walking normally towards the radar. If the
human were to walk at an angle with respect to the radar,
there is a greater likelihood of overlap between the low
micro-Doppler and azimuth positions of body parts,
resulting in degradation in the image quality.

We compare this result with two other cases. In the
first case, the array consists of [5 × 5] elements, operating
at 7.5 GHz, and the result is shown in Fig. 5(b). The
quality of the image has degraded due to the poor
azimuth-elevation resolution caused by the smaller-sized
aperture. In the second case, the array consists of
[20 × 20] elements, operating at 1.875 GHz. Though the
size of the aperture has increased, Fig. 5(c) shows
deterioration in imaging due to poor Doppler resolution of
the multiple scatterers because of the low carrier
frequency. These figures indicate the lower bounds on the
performance with three-dimensional Fourier processing.
Therefore, we investigate alternate techniques for further
reducing the number of array elements, while retaining the
carrier frequency at 7.5 GHz in the next section.

V. JOINT DOPPLER PROCESSING AND CS

In this section, we examine the possibility of
combining Doppler processing, as described in the
previous section, with CS-based array processing to
reduce the number of elements in the antenna array. We
consider the measurement data at a random subset of a
[N × N] antenna array. This is indicated by a
vector-masking function R on measurement vector Y. We
perform Doppler processing on the time-domain data at
each element of this random subset as per (9).

χ(f, t) =
∫

RY (τ )h(t − τ )e−j2πf τ dτ . (9)

Then, we replace 2D Fourier processing with CS to
generate Wc

θ,φ for every Doppler from χ(f, t). This is based
on the assumption that Wc

θ,φ is sparse, compressible, and
can be represented by

α(f, t) = ψWc
θ,φ(f, t), (10)

where ψ is the Dirac basis, which is incoherent with
respect to the Fourier basis. Therefore,

χ(f, t) = RFψ−1α(f, t). (11)

Then, l1 minimization is carried out to solve (11) for the
sparse transform α for each Doppler and Wc

θ,φ is realized
from the inverse of (10). Finally, the radar image, Xdc

θ,φ, is
generated by the complex sum of the peak scatterers for
each Doppler, as detailed in (8). The CS steps used in this
section are identical to those used in Section III, except
that they are carried out on the frequency domain data
rather than on time-domain data. The key feature of our
algorithm is that CS has enabled us to recover the image
using a sub-Nyquist number of array elements, i.e., to

Fig. 6. Frontal radar image of human captured by combined Doppler
processing and array processing with CS using (a) 50% and (b) 10% of

number of sensors in [20 × 20] array configuration operating at 7.5 GHz.
Image in (c) is generated with 25% of number of sensors in same radar

with SNR of 10 dB.

solve the under-resolved beamforming problem in the
frequency domain.

A. Results and Inferences

We consider a [20 × 20] array that operates at 7.5 GHz
to image the moving human with the same simulation data
used in Section IV. We perform joint Doppler processing
and CS-based array processing by using a randomly
chosen 50% subset of the total elements in the array. The
Doppler processing is carried out over a dwell time of
0.05 s. Though the number of elements have reduced
significantly, the size of the aperture remains that of a
[20 × 20] array. The resulting image of the human over
one time interval is shown in Fig. 6(a). We observe that we
can identify the arms, legs, and torso of the human with
200 antenna elements. The process is repeated using 40
elements (10% subset of the antenna array), and the results
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Fig. 7. NMSE of image reconstruction as function of compression of
[N × N] array with SNR level specified as (a) N = 5, SNR = ∞; (b) N =

10, SNR = 10 dB; (c) N = 10, SNR = ∞; (d) N = 20, SNR = 10 dB;
and (e) N = 20, SNR = ∞. Image reconstruction is through combined

Doppler processing and CS-based array processing.

are shown in Fig. 6(b). Though the image shows slight
degradation in quality, indicating that we may have
reached the lower bounds of the performance of our
proposed algorithm, we are still able to identify the
different body parts. Fig. 6(c) shows the image of the
human using 25% of the elements of the [20 × 20] array
when the signal to noise ratio level is 10 dB. The image
shows some noisy features, though the human can still be
distinguished.

To quantitatively study the impact of CS on different
sizes of array configurations, we considered radar systems
with [20 × 20], [10 × 10], and [5 × 5] antenna arrays. We
computed the NMSE of image reconstruction for each
array configuration for different degrees of compression.
In each case, we compared the recovered image with the
corresponding image generated with Doppler and array
processing of 100% of elements of the array. The error
was averaged over a duration of 0.5 s, i.e., from 10 sets of
data captured over a dwell time of 0.05 s each. The results
presented in Fig. 7 show a higher overall level of error
when compared with Figs. 4(a), 4(b). This is due to the
overlap of micro-Dopplers of different body parts during
some time intervals in the human walking motion and is a
limitation associated with human Doppler data. Also,
because the motion is realistic, the velocities of the body
parts are not constant during the entire dwell time. This
introduces blurring in some frames (not shown here).
When the number of elements are reduced, i.e., the degree
of compression is increased, the image reconstruction
error increases for all cases. Second, the error is highest
for the [5 × 5] array, followed by the [10 × 10] array, and
then the [20 × 20] array. For instance, the error is above
50%, even when the degree of compression is low (90%)
for the [5 × 5] array case. These results are consistent with
the earlier results presented in
Section III.

Next, we studied the quantitative impact of noise on
CS for two cases: the [20 × 20] array data and the
[10 × 10] array data. Noisy data were modeled by

including additive white Gaussian noise to the
measurement data such that the SNR is 10 dB. The results
in Fig. 7 show that there is some deterioration in the image
recovery due to noise. However, the actual size of the
array is still a more significant factor towards determining
the quality of the image reconstruction.

VI. CONCLUSION

Conventional radar implementations require
electrically large antenna apertures with many array
elements operating at high frequencies to generate
high-resolution images of spatially large moving targets,
such as humans. We have used Doppler processing with
CS-based array processing to overcome these two
limitations. Different body parts are resolved based on
their micro-Doppler, azimuth, and elevation. By
introducing an additional Doppler dimension, we are able
to lower the radar carrier frequency and the number of
array elements required to resolve the point scatterers
across the azimuth and elevation dimensions. CS-based
beamforming enables us to further reduce the number of
array elements below the Nyquist limits. We tested our
methods on simulated radar data of a moving human for a
wide variety of antenna array configurations. We were
able to generate high-quality radar images of a moving
human at a standoff distance of 10 m, while reducing the
carrier frequency from Ka band to C band and the number
of array elements from 6400 to just 100 array elements.
Our methods are fairly robust up to a SNR level of 10 dB.
However, further investigation is required to estimate the
robustness of the technique to clutter issues that may be
introduced by multipath when the radar is operated in
nonline-of-sight environments. Walls, for instance, may
introduce attenuation, refraction, ringing, and multipath to
the radar signal, which may impact the radar imaging
methodology.
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