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Abstract—We present a modified harmonic radar architecture
for distinguishing between two dynamic targets - a friend and
a foe - in the radar propagation channel. The main application
for our proposed radar is for search and rescue missions or
surveillance. The radar consists of a narrowband sinusoidal
transmitter and a dual channel receiver, wherein the primary
and secondary channels are tuned to the fundamental transmitted
frequency and its second order harmonic respectively. The radar
scattered returns from both friend and foe are gathered at the
primary receiver while the secondary receiver gathers the second
order harmonics emanating from the harmonic radar tag on the
friend. The secondary receiver data are used to train unique data
driven dictionaries that characterize the motion of the friend.
These dictionaries are used to disaggregate and reconstruct the
returns from the friend and foe in the primary linear radar
data. We validate our proposed radar concept on simulated
radar data of a friend and foe and demonstrate that the radar
signatures from the reconstructed radar data are qualitatively
and quantitatively similar to the ground truth radar signatures
from the friend and foe.

I. INTRODUCTION

A harmonic radar typically transmits a radar signal at a
carrier frequency (fc). This signal falls on a target that is
tagged with a passive electronic circuit consisting of a wire
dipole antenna, a Schottky diode and an inductive loop across
the diode [1]. Due to the inherent non-linearity in the diode
characteristics, higher order harmonics are generated in the
tag of which the second order harmonic is the strongest. The
returns are scattered back to the radar which consists of a radar
receiver tuned to twice the carrier frequency (2fc). Returns at
the higher order harmonics, therefore, indicate the presence of
the tagged target. Variants of the harmonic radar have been
researched and developed for detecting and tracking insects
(especially bees) [2]–[5]. More recently, harmonic radars have
been researched for imaging moving targets and synthetic
aperture imaging of targets by effectively suppressing clutter
from linear targets [6], [7]. Unlike RFID tags that operate
over ultra-short ranges (a few centimeters), the harmonic radar
is capable of tracking cooperative targets over longer ranges
(several meters).

In this work, we propose a modified architecture of a
harmonic radar to distinguish between friends and foes at
short ranges in the radar propagation channel. This novel
variant of the harmonic radar receiver will be useful for
diverse applications such as search and rescue missions in
hostile environs, or for facilitating fire escape strategies, or
for surveillance. For example, the radar operator will be able

to track the rescue operator in the midst of hostile personnel
by tagging the rescue operator with a small size, passive,
harmonic radar tag. Similarly, operators outside will be able
to effectively detect, monitor and guide a fireman by tagging
him. In the simplest scenario, let us assume that the channel
consists of two dynamic targets - a friend and a foe. In the
proposed architecture, shown in Fig.1, the radar transmits a
continuous wave frequency signal at fc that falls on both
friend and foe. The radar consists of two receiver channels
- a primary channel (antenna, mixer, filter) tuned to fc, like
a classical linear radar, and a secondary channel tuned to 2fc
resembling a traditional harmonic radar receiver. The friend
is distinguished from the foe by tagging the friend with a
harmonic radar tag that generates second and higher order
harmonics of the incoming signal. Since both the friend and
foe are dynamic, they give rise to time-varying Doppler shifts
that are proportional to the product of the radial velocity
of their motions with respect to the radar and the carrier
frequency. Hence, the scattered returns at the primary radar
receiver will consist of the superposition of the Doppler shifted
returns from both the friend and foe at fc. However, the
secondary receiver will gather the Doppler shifted returns from
the friend alone at 2fc. Since the returns from the friend at
both the receivers are functions of the motion of the friend, the
hypothesis is that the radar data obtained from the secondary
receiver can be used to disaggregate the signals from the friend
and foe at the primary receiver.

Traditional data independent transforms such as Fourier
and wavelets are not suitable for our problem formulation
since the same set of basis vectors or dictionary atoms cannot
be used for representing the signals at both fc and 2fc. In
[8], [9], customized basis vectors were derived from radar
data at specific frequencies using sparsity based dictionary
learning algorithms and used to classify data at other distinct
frequencies. Since these dictionaries are fine tuned to the
underlying motion characteristics of the target, the same set of
dictionary atoms were effective across multiple frequencies.
Using similar principles, we propose to derive customized,
data driven dictionaries from the second order harmonic radar
data from the friend. Then, we use these dictionary atoms in
two ways on the radar data from the primary receiver. First, we
reuse the friend’s dictionary atoms to extract the component of
the friends returns from the aggregate radar signal. Second, we
use the friends dictionary to initialize the dictionary learning
algorithm for the foe.
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We test the algorithm on simulated radar data for the
proposed modified harmonic radar architecture. We use
computer animation data to model two different motions -
one for the friend and one for the foe. Then we combine
these animation data with electromagnetic modeling based on
the techniques described in [10] to simulate the time-domain
linear and harmonic radar returns at both the receivers. These
modeling techniques have been widely used in radar literature
to generate realistic radar micro-Doppler spectrograms of
dynamic targets - humans, animals [11] and vehicles [12],
[13]. We use sparsity based dictionary learning algorithms on
the secondary radar receiver data to extract dictionaries for
the friend. Then we reuse these same dictionaries on the radar
data from the primary receiver to separate the signals from the
friend and the foe.

Our paper is organized in the following manner. In
the following section, we describe the proposed dictionary
learning algorithm for separating the friend and foe returns
from the aggregate time-domain radar data. Then in Section
III, we describe the simulation methodology that we have
adopted for modeling the radar returns of both the friend and
the foe at the proposed harmonic radar architecture. Then in
Section IV, we present the results of the algorithm on the
simulated radar data. Finally, we conclude the paper in Section
V. Notation: Upper-case bold characters are used to denote
matrices, ||.||p represents the lp norm of a vector.

II. THEORY

In the proposed radar architecture, a continuous wave signal
at carrier frequency fc is transmitted. The radar consists of
two receivers: a primary linear receiver turned to fc, and a
secondary harmonic radar receiver tuned to 2fc. The radar
propagation channel consists of two targets - a friend and
a foe. The friend is tagged with a passive electronic circuit
consisting of a dipole, diode and an inductive loop. The
scattered radar signal consisting of the Doppler shifted returns
from the dynamic friend and foe at fc is gathered at the
primary radar receiver. The data are represented as a matrix,
X1

rx, with N number of measurements or time-domain signals
(X1

rx = [x1rx1
. . . x1rxN

]). Each of these signals is digitized to
have M samples and denoted by x1rxn

∈ RM×1. The harmonic
radar data at the secondary receiver are represented as X2

rx

which has the same dimensions as X1
rx. In the following

two sections, we describe the algorithms for learning the
friend’s dictionary from X2

rx and how this dictionary can be
subsequently used to separate the returns from the friend and
foe in X1

rx.

A. Learning Friend’s Dictionary from Second Order
Harmonic Radar Data

Traditionally, radar data have been expressed in terms of
data independent basis vectors such as Fourier or wavelets.
More recently, data driven dictionaries have been used to
represent radar data [14]. The advantage here is that the atoms
of the dictionaries are fine tuned to uniquely represent the
radar data with greater sparsity. The resulting dictionaries have

been utilized for a plethora of radar applications such as target
classification [8], [9], clutter mitigation [9] and single channel
source separation for detection of multiple targets [15], [16].
In this work, we use these dictionary learning algorithms to
represent the radar data from the secondary receiver, as shown
in

X2
rx = Dfr Z

2
fr +N2. (1)

Here Dfr are unique and customized data driven dictionaries
that represent the data with corresponding coefficients Z2

fr

and N2 is the additive Gaussian noise in the secondary
radar receiver. Our objective is to learn these dictionaries by
minimizing the objective function, J1(Dfr,Z

2
fr), as shown in

min
Dfr,Z2

fr

||X2
rx−Dfr Z

2
fr ||22 s.t ||Z2

fr ||0 < τ0. (2)

In (2), we enforce an l0 norm (‖.‖0) constraint on the
coefficient matrix, Z2

fr, to enforce the sparse representation
of radar data. However, the l0 minimization problem is
NP-hard [17]. Therefore, using standard compressed sensing
techniques, we relax the l0-norm with l1-norm, as shown in

min
Dfr,Z2

fr

||X2
rx−Dfr Z

2
fr ||22 + λ||Z2

fr ||1, (3)

and still ensure sparsity. Here λ ∈ R, is a regularization
parameter that trades-off between the sparsity level in Z2

fr and
the error in data fitting. The subsequent optimization is done
through a two staged procedure where Dfr and Z2

fr are updated
through two alternating minimization operations as described
below.

In the first step, the atoms in Dfr are initialized using
randomly selected training radar signals such that Dfr ∈
RM×P , is over complete (M < P ). Then we solve for Z2

fr in

min
Z2

fr

||X2
rx−Dfr Z

2
fr ||22 + λ||Z2

fr ||1, (4)

using the iterative soft thresholding algorithm (ISTA) [18].
Once the sparse coefficients are obtained, the dictionary is
updated using a least squares approach [19], as shown in

min
Dfr

∥∥X2
rx−Dfr Z

2
fr

∥∥2
F

s.t.
∥∥dfrp∥∥22 ≤ 1,∀p = 1, 2, . . . P. (5)

Columns of the dictionary are normalized to have norm
less than unity. The steps in (4) and (5) are iterated until
J1(Dfr,Z

2
fr) converges or reaches a very low tolerance level.

B. Disaggregation of Friend and Foe Returns from Primary
Radar Data at Fundamental Frequency

The radar data at the primary receiver consists of returns
from the friend and foe and hence can be written as

X1
rx = Dfr Z

1
fr +Dfoe Zfoe +N1, (6)

where Dfoe and Zfoe are the dictionaries and coefficient
vectors of the foe and N1 is the Gaussian noise at the primary
radar receiver. In the above expression, we reuse the same Dfr

learnt from the secondary radar receiver data to represent the
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Fig. 1: System diagram of proposed harmonic radar architecture

returns from the friend. The corresponding coefficients are
Z1

fr which are naturally distinct from Z2
fr. Here, the goal is

to separate the returns from the friend and foe. Hence, we
formulate a second objective function, J2(Dfoe,Zfoe,Z

1
fr), as

min
Dfoe,Zfoe,Z1

fr

||X1
rx−Dfr Z

1
fr−Dfoe Zfoe ||22

s.t ||Z1
fr ||0 < τ1 and ||Zfoe ||0 < τ2.

(7)

In (7), sparsity constraints have been imposed on both Z1
fr and

Zfoe. Again, due to the NP-hard nature of the formulation, we
use compressive sensing techniques to relax the l0 norm to l1
norm, as shown in

min
Dfoe,Zfoe,Z1

fr

||X1
rx−Dfr Z

1
fr−Dfoe Zfoe ||22

+λ1||Z1
fr ||1 + λ2||Zfoe ||1,

(8)

where λ1 and λ2 are the regularization parameters that control
the degree of sparsity in the corresponding coefficients and the
error in the data fitting.

We solve (8) through iterative steps. We begin by first
initializing the values of Dfoe and Zfoe. Dfoe ∈ RM×P

is initialized by selecting P random signals from X1
rx and

Zfoe ∈ RP×N is initialized with a randomly constructed
sparse matrix. Then, we estimate Z1

fr by solving

min
Z1

fr

||X1
rx−Dfoe Zfoe−Dfr Z

1
fr ||22 + λ1||Z1

fr ||1, (9)

using the ISTA algorithm. Then using this estimate for Z1
fr,

we solve

min
Zfoe

||X1
rx−Dfr Z

1
fr−Dfoe Zfoe ||22 + λ2||Zfoe ||1, (10)

for Zfoe again using the ISTA algorithm. Finally, we update
Dfoe using least squares where

min
Dfoe

||X1
rx−Dfr Z

1
fr−Dfoe Zfoe ||22

s.t ||dfoep ||22 < 1, p = 1 · · ·P.
(11)

The steps in (9),(10) and (11) are repeated until the objective
function converges or the data fitting error reaches a very low
value.

C. Reconstructing friend and foe’s returns

Once the dictionaries and the corresponding coefficients
of the friend and the foe are learnt from the primary radar
data, the individual returns from the friend (X̃fr) can be
reconstructed using

X̃fr = Dfr Z
1
fr . (12)

Similarly the returns from the foe are reconstructed using

X̃foe = Dfoe Zfoe . (13)

III. SIMULATION SET UP

In this section, we discuss the simulation set up for
validating the proposed methodology. We consider the
proposed dual channel radar, transmitting a sinusoidal
waveform at a carrier frequency of fc. We assume that the
radar propagation channel consists of two targets - a friend
who is tagged with a harmonic radar tag and a foe. We model
the radar returns from both friend and foe by combining
computer animation models of human motions with radar
scattering center models of the humans as described in [10],
[20]. Computer animation data describe the skeleton structure
of Bi, i : fr, foe, bones of a friend or foe and the time-varying
positions of each of the joints of the skeleton. We model each
of the humans as a collection of ellipsoidal primitives defined
for each bone and the scattering center of each of the primitive
is assumed to be located at the center of the ellipsoid. Then, the
nth time-domain linear radar returns at the primary receiver,
xnrx1

, are the superposition of the returns from the friend and
foe. This is modelled as

xnrx1
[m] =

Bfr∑
b=1

√
σbfr[m]

rbfr[m]2
e−j2πfc2r

b
fr[m]/c+

Bfoe∑
b=1

√
σbfoe[m]

rbfoe[m]2
e−j2πfc2r

b
foe[m]/c

(14)
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Fig. 2: Room geometry of three different scenarios where foe is (a) walking away from the radar, (b) jumping, and (c) skipping

where
√
σbi , i : fr, foe, is the radar cross-section of each bth

ellipsoid on the friend or foe. This RCS is a function of the
dimensions of the primitive, the skin dielectric properties and
the radar aspect angle [21]. In (14), rbi , i : fr, foe, is the
radial distance between the bth point scatterer on the friend
or foe from the radar. The duration of each simulation is one
coherent processing interval. We consider N such simulations
to form X1

rx. In a similar manner, we generate X2
rx. Here, the

returns are only from the friend and not the foe since only
the friend is tagged and the carrier frequency in the exponent
is 2fc. In the above simulation model, we have assumed that
there is no electromagnetic interaction (multipath scattering
or shadowing) between the friend and the foe. Hence the
performance of the algorithm when the friend and foe are
spaced closely in range/cross-range can only be determined
via experiments.

In our work, we have considered a radar of fc = 7.5GHz,
located at [1, 1, 2]m as shown in Fig.2 where X −Z plane is
the ground plane and Y is the height axis. Computer animation
data from ACCAD motion capture database, CMU at a video
frame rate of 120 fps are used to model both the friend and
the foe. The animation data are suitably interpolated from the
video frame rate to the radar sampling frequency of 1KHz.
The skeleton structure of the human in this data consists of
28 bones. We simulate radar returns for three different cases.
For all three cases, the friend walks towards the radar from
[−6, 0, 6]m to [0, 0, 0]m and is depicted in green in the figure.
From here onwards, we refer to the friend’s motion as FH. In
each of the three cases, we consider a different motion for the
foe - a human walking away from the radar (BH), a human
running, jumping and finally walking away from the radar
(RJWH) and a human skipping as it passes the radar (SH). The
foe is depicted in blue in the figure. The trajectories for each
of these motions are indicated in Fig.2a, b and c respectively.
The dwell time / coherent processing interval for each of the
simulations is 0.1s. Hence, the entire duration of the motions
are split into multiple measurements of 0.1s width.

IV. RESULTS

In this section, we discuss the qualitative and quantitative
results to validate our proposed methodology for
distinguishing between friend and foe.

A. Qualitative Comparison

We first discuss the first case, where the friend is walking
towards the radar but the foe is walking away from the radar,
as shown in Fig.2a. The time domain linear radar data from
the superposition of friend and foe returns, X1

rx, are processed
with short time Fourier transform using a window function,
h(t), as shown in

χfr(t, fD) =

∫
xfr(τ)h(t− τ)e−j2πfDτdτ, (15)

and displayed in Fig.3. In (15), fD indicates the Doppler
frequency. Figures.3b and c show the ground truth results

Fig. 3: Micro-Doppler spectrogram of (a) returns from friend
walking toward the radar and foe walking away from radar;
ground truth returns of (b) friend, and (c) foe; reconstructed
returns of (d) friend, and (e) foe

for the friend (χfr) and foe (χfoe) respectively. Since the
friend is walking towards the radar (FH), the micro-Dopplers
are positive. The strongest returns emanate from the torso
while the weaker returns arise from the swinging of the arms
and legs. The returns from the human walking away are
very similar except that they are at negative Dopplers. The
dictionaries for the friend are learned from the radar data
from the second receiver and then used to extract the friend
returns from the aggregate; and to learn the dictionary of the
foe. The reconstructed friend (χ̃fr) and foe (χ̃foe) returns are
presented in Fig.3d and Fig.3e respectively. The results for
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all the figures are normalized for a dynamic range of 20dB.
Note that the spectrogram reconstructed from the dictionary
learning at the second harmonic frequency captures the salient
micro-Doppler features in the fundamental frequency data
and closely resembles the ground truth results qualitatively.
This demonstrates the efficacy of dictionary learning over
traditional data independent transforms for capturing higher
order motion characteristics. The strength of the returns from
the reconstructed data, however, slightly differs from those of
the ground truth. Thus the dictionary learning is not quite as
effective in correctly estimating the signal strength. Learning
the dictionary of foe data is slightly more challenging since
there are no training data available (unlike the friend). The
reconstructed image looks fairly similar to the ground truth
data and we are able to observe the negative micro-Dopplers
from the torso and the limbs. However, we observe some
remnants of the friend, in the form of a few positive
micro-Dopplers, in the spectrogram of the foe.

In the second case, the foe first runs, then jumps and
finally resumes walking (RJWH), as shown in Fig. 2b. The
micro-Doppler spectrogram generated from the superposition
of the returns from the friend and foe are shown in Fig.4a
and the corresponding ground truth results from each of
the two humans are shown in Fig.4b and c respectively.
The reconstructed results of the friend and foe are shown

Fig. 4: Micro-Doppler spectrogram of (a) returns from friend
walking toward the radar and foe running, jumping and
walking; ground truth returns of (b) friend, and (c) foe;
reconstructed returns of (d) friend, and (e) foe.

in Fig.4d and e respectively. Since the running motion is
faster than the walking motion, we see high Dopplers at
the beginning from approximately 0 to 0.5s, then we see
a discontinuity arising from the jumping motion, following
which the spectrogram transitions to walking motion. Again,
we observe that the reconstruction of the friend from the higher
order harmonic radar data is fairly effective from a qualitative
perspective. However, the strength is not quite the same. The
reconstructed micro-Dopplers from the foe are also fairly
similar to the ground truth results. However, we again observe
some additional noise-like features, at high frequencies, in the
reconstructed spectrograms.

In the last case, the foe performs a skipping motion as
shown in Fig.2c. The resulting spectrograms of the radar
data before and after dictionary learning are presented in
Fig.5. The ground truth radar micro-Dopplers show that the

Fig. 5: Micro-Doppler spectrogram of (a) returns of friend
walking toward the radar and foe skipping; ground truth
returns of (b) friend, and (c) foe; reconstructed returns of (d)
friend, and (e) foe.

skipping motion speed is somewhat similar to the walking
motion. However, the Doppler appears to be steadily declining
due to the translational trajectory adopted by the foe. In
the aggregate radar data shown in Fig.5a, we observe that
there is considerable overlap in the micro-Doppler between
the walking and the skipping motions between 0 and 1.5s.
As a result, the reconstruction of the walking motion is
not as effective as the previous cases as the micro-Dopplers
appear to be decreasing in Doppler. Note that the training
radar data for learning dictionaries for the foe are drawn
entirely from the friend data, albeit at a higher harmonic,
and these dictionaries are used for reconstruction. However,
the corresponding coefficients, Z1

fr, are obtained from X1
rx

which consist of returns from both friends and foes. Hence,
the overlap between the friend and foe micro-Dopplers results
in slightly poor estimation of Z1

fr. Similar limitations are
observed in the reconstructed returns from the foe. The
algorithm appears to not be able to correctly reconstruct the foe
returns from 0 to 1.5s due to the overlap between friend and
foe. Subsequently, it is able to correctly extract the foe. Thus
the performance of the algorithm depends on the separation
of the friends and foe in the micro-Doppler space.

B. Quantitative Comparison
We use two metrics of comparison between the ground

truth images of the friend and foe and their corresponding
reconstructed images. The first is the normalized mean square
error (NMSE) that is computed by

NMSE =
||χ̃fr − χfr||22
||χfr||22

, (16)

where X̃fr is the micro-Doppler spectrogram generated from
the reconstructed time-domain returns of the friend. χfr is the
micro-Doppler spectrogram obtained from the ground truth
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TABLE I: Results of SSIM and NMSE: between ground-truth
and reconstructed images.

Cases Classification SSIM NMSE

FH (friend) + BH (foe) Friend 0.96 0.18
Foe 0.98 0.24

FH (friend) + RJWH (foe) Friend 0.98 0.14
Foe 0.97 0.17

FH (friend) + SH (foe) Friend 0.88 0.18
Foe 0.88 0.15

time domain data. Similar computations are conducted to
determine the NMSE for the foe. NMSE is important for
comparing pixel-wise the energy in both the images. However,
it is not effective in comparing the gross features of both
the images. Therefore, we propose a second metric called the
structural similarity index (SSIM) which is computed by

SSIM(χ̃fr, χfr) =
(2µχ̃fr

µχfr
+ C1)(2σχ̃fr χfr

+ C2)

(µ2
χ̃fr

+ µ2
χfr

+ C1)(σ2
χ̃fr

+ σ2
χfr

+ C2)

(17)

This metric compares the luminance and contrast in the two
images. Here µχfr

, µχ̃fr
, σχfr

, σχ̃fr
and σχ̃fr χfr

are the local
means, standard deviations and the co-variance of χfr and χ̃fr

respectively. The NMSE and SSIM for all three cases for both
the friend and foe are reported in Table.I. The results show that
the SSIM between the original ground truth images and their
reconstructed counterparts is fairly high for all three cases.
This agrees with our qualitative observations of the similarity
in the micro-Doppler features in the original images and the
reconstructed images. However, the NMSE in all cases is high
due to the poor estimation of the strength of the returns. Again,
this result is consistent with our qualitative observation of the
difference in strength.

V. CONCLUSION

We have proposed a harmonic radar with a dual channel
receiver for distinguishing a friend and foe that are moving
together in the radar propagation channel. The proposed radar
framework may be useful in search and rescue missions and
surveillance operations. The radar consists of a primary and
secondary receiver channel that are tuned to the fundamental
and second order harmonic of the transmitted signal frequency
respectively. The friend, being tagged with a harmonic radar
tag, scatters radar signals that are gathered by both the
receivers. However, radar returns from the foe who is not
tagged will only be gathered at the primary receiver. We
have proposed an algorithm where the friend’s radar data at
the secondary receiver are used to train data driven, sparsity
based dictionaries. These are subsequently used to extract the
friend’s radar data from the aggregate data in the primary
receiver and to reconstruct the foe. We tested the proposed
algorithm with simulated radar data of diverse motions of
the friend and foe. Then we, qualitatively and quantitatively,
compared the reconstructed radar data with the ground truth
radar data. Our results showed that the proposed dictionary
learning based algorithm is effective in reconstructing the
salient micro-Doppler features in the friend and foe resulting
in high structural similarity index values. However, there are

two limitations. The algorithm is not able to correctly estimate
the strength of the returns from the friend and foe resulting in
poor NMSE. Second, the algorithm’s performance deteriorates
when there is considerable micro-Doppler overlap between the
friend and foe.
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