
Detection of Multiple Movers
Based on Single Channel
Source Separation of Their
Micro-Dopplers

SHELLY VISHWAKARMA , Student Member, IEEE
SHOBHA SUNDAR RAM, Member, IEEE
Indraprastha Institute of Information Technology Delhi, New Delhi, India

Studies have demonstrated the usefulness of micro-Doppler sig-
natures for classifying dynamic radar targets such as humans, heli-
copters, and wind turbines. However, these classification works are
based on the assumption that the propagation channel consists of only
a single moving target. When multiple targets move simultaneously
in the channel, the micro-Dopplers, in their radar backscatter, super-
impose thereby distorting the signatures. In this paper, we propose
a method to detect multiple targets that move simultaneously in the
propagation channel. We first model the micro-Doppler radar signa-
tures of different movers using dictionary learning techniques. Then,
we use a sparse coding algorithm to separate the aggregate radar
backscatter signal from multiple targets into their individual compo-
nents. We demonstrate that the disaggregated signals are useful for
accurately detecting multiple targets.
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I. INTRODUCTION

Targets that undergo micromotions such as rotation and
vibration along with the bulk body translational motion
give rise to frequency modulations along the main Doppler
called micro-Dopplers [1], [2]. Extensive studies over the
last decade have demonstrated that micro-Doppler features
can be exploited for the classification of a variety of ground
moving targets such as vehicles, animals [3]–[6], wind tur-
bines [7], and airborne targets [8]–[10]. However, a ma-
jority of the works in this area have focused on using
micro-Dopplers for identifying different human activities
[11]–[39]. Radar detection of humans may be of particu-
lar interest for law enforcement, security, and biomedical
applications. Humans are rarely still and the movements of
their arms and legs give rise to micro-Dopplers [11]. As a re-
sult, Doppler sensors have been used to detect both periodic
motions, such as the human gait [11], [13]–[18], and nonpe-
riodic motions of the arms or legs [19], [20]. Fioranelli et al.
[21], [22] investigated the possibility of distinguishing be-
tween armed and unarmed personnel based on their micro-
Doppler signatures. The backscattered data from dynamic
targets have mostly been gathered by narrow-band Doppler
radars at microwave frequencies. Alternatively, wideband
radar [23], [24], millimeter radar [20], [25], and acoustic
sensors [11], [26] have also been deployed for gathering
micro-Doppler data. Subsequently, discriminative features
have been extracted from time-frequency representations
of the micro-Doppler data. The algorithms have ranged
from heuristic techniques [13], [39], to more sophisticated
methods based on principle component analysis [30], [31],
independent component analysis [32], empirical mode de-
composition [20], and Hilbert–Huang transform [32], [34].
Studies have also been carried out to determine the most
informative features in the micro-Doppler signatures for
classification [37]. Once the features are extracted, algo-
rithms such as support vector machine [13], [20], [23] and
Bayesian classifier [4], [38] have been used for classifica-
tion purposes. More recently, Kim and Moon [39] used deep
convolution neural networks, which jointly learnt informa-
tive features and classification boundaries without using an
additional feature extraction algorithm.

All of these works are based on the underlying assump-
tion that the channel consists of only a single dynamic
target or target class during detection. When multiple tar-
gets are present simultaneously in the channel, their radar
backscatter superimpose. As a result, the signatures are
dominated by features arising from the strongest targets
(based on their radar cross section and proximity to the
radar) with distortions arising from the weaker target re-
turns. The distorted micro-Doppler signatures are then in-
correctly classified. This is a serious limitation in most real
world scenarios since they often consist of multiple movers.
For instance, indoor environments may consist of moving
humans, fans, and loudspeakers, while outdoor environ-
ments may comprise humans, vehicles, and animals. This
limitation may be partially overcome at the cost of increased
hardware complexity by augmenting Doppler sensing with
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either direction-of-arrival or range processing [40], [41].
Cammenga et al. [42] have used both high range resolu-
tion capability of ultra wide band (UWB) radar and micro-
Doppler information to obtain joint range time-frequency
profiles with a view to separate groups of targets.

In this paper, we propose to retain the low cost and com-
plexity of continuous wave radar hardware. Therefore, we
adopt signal processing to detect multiple simultaneously
moving targets by separating the aggregate backscatter sig-
nal into individual components from each target. Algorith-
mically, signal disaggregation is a single channel source
separation problem rather than a classification problem.
The algorithm used in this paper is based on sparse coding
methods that were recently developed to separate the en-
ergy signals from multiple residential electrical appliances
into their component signals [43].

Here, we use training data to learn a unique model
or dictionary for the micro-Doppler data from each tar-
get class. Since dictionary learning is driven by the radar
data, its atoms may be better tuned to match the underlying
signal. Consequently such learned dictionaries can repre-
sent the radar signal in a sparser fashion compared to data-
independent transforms like wavelet or Fourier. Once learnt,
these dictionaries can be directly used to classify test data
from each class. In contrast, in a disaggregation scenario,
the dictionaries of all the classes are combined together and
the resulting set is used for separating the test aggregate
radar signal from multiple targets. Subsequently, the pres-
ence of these targets can be detected based on the strength
of their corresponding disaggregated micro-Dopplers.

We demonstrate this approach for detecting four indoor
movers with a monostatic continuous wave Doppler radar at
7.5 GHz. The target classes are a human walking toward the
radar, a human walking away from the radar, and a human
walking in a tangential direction before a radar and a table
fan (TF). The training micro-Doppler data for learning dic-
tionaries are obtained from measurements of 40 individuals
(men and women of varying heights and gaits) and a TF with
multiple rotation speeds, orientations, and distances from
the radar. The test data were gathered separately for differ-
ent combinations of humans and fan in single, two, three,
and four target scenarios. We use the previously learnt dic-
tionaries to both classify and disaggregate the test data. Our
results demonstrate that unlike the classifier that uses the
dictionaries to accurately identify only the strongest target
returns, the disaggregation algorithm correctly detects mul-
tiple targets that are simultaneously moving in the channel
in more than 94% of the cases. Subsequent sections of the
paper are organized as follows. Section II briefly explains
the algorithms used for dictionary learning, classification,
and disaggregation. In Section III, we describe the experi-
mental setup and the data collection process. The validation
of the proposed method is presented in Sections IV and V
concludes the paper.

II. THEORY

There have been several research efforts into repre-
senting micro-Dopplers with traditional data-independent

dictionaries for classification purposes. In these cases, the
dictionary parameters such as the short time window dura-
tion, in the case of Fourier, must be set based on the type of
target. Hence, when there are multiple targets, the selection
of the appropriate parameters for the successful representa-
tion of the signal becomes challenging. Dictionary learning
presents an alternate method where a set of basis vectors
or atoms (dictionaries, D) are used to represent signals X,
as shown in (1). Here, each column of X indicates a time-
domain measurement of the radar signal:

X = DZ. (1)

These atoms can be tuned to the underlying signal and
hence may yield slightly sparser representations of the sig-
nals Z than the data-independent dictionaries. In essence,
dictionary learning from training data X involves minimiz-
ing the objective function J (D, Z), as shown in the follow-
ing equation:

J (D, Z) = min
D,Z

‖X − DZ‖2
F + λ ‖Z‖0 . (2)

Here, ‖.‖0 is the l0-norm that provides a count of the
number of nonzero elements in coefficients Z. The opti-
mization is done through a two-staged procedure where
atoms of dictionary and coefficients are updated through
two alternating minimization operations as described ahead.

A. Two-Stage Implementation of Dictionary Learning

We consider N number of M-dimensional training
signals denoted by X = [x1 . . . xN ], where xn ∈ RM×1.
Dictionaries are learnt from X in a two-staged iterative
procedure. First, the dictionaries are initialized using
randomly selected training signals such that D ∈ RM×P

is overcomplete (where the number of atoms P is greater
than the signal dimension M).

1) Sparse Coding Stage: In order to ensure sparse
representation of X, we impose the following constraint on
the coefficients Z, as shown in the following equation:

Z = min
Z

‖X − DZ‖2
F s.t. ‖Z‖0 < τ (3)

The sparsity level is controlled by parameter τ .
Unfortunately,\l0-minimization is NP-hard [44]. Com-
pressed sensing has demonstrated that we can replace the
l0-norm with l1-norm, as shown in (4), and still ensure spar-
sity:

Z = min
Z

‖X − DZ‖2
F + λ ‖Z‖1 . (4)

Here, λ ∈ R is a regularization parameter that controls
the tradeoff between the level of sparsity in Z and the error
in data fitting. The formulation in (4) is a convex prob-
lem, which we solve using the iterative soft thresholding
algorithm (ISTA) algorithm suggested by Selesnick [45].

2) Dictionary Update Stage: Once the sparse coef-
ficients are obtained, the dictionary is updated using a
least squares approach [46], as shown in (5). Columns of
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Fig. 1. Single channel source separation of radar signals from multiple
targets.

dictionary are normalized to have norm less than unity:

D = min
D

‖X − DZ‖2
F

s.t.
∥
∥dp

∥
∥

2
2 ≤ 1, ∀p = 1, 2, . . . P . (5)

This two-staged process is iterated until J (D, Z) con-
verges or reaches a very low tolerance level.

If there are I target classes, the corresponding
dictionaries Di are learnt for each ith class using
this procedure. Once learnt, the dictionaries can be
used either directly for classification as described in
Section II-C or can be used to disaggregate or separate
the superposed radar backscattered signals from multiple
moving targets as described in Section II-B. The limitation
of classification algorithm is that the aggregate signal is
classified or assigned to just a single class. In contrast, the
disaggregation algorithm enables the aggregate signal to be
assigned across multiple classes.

B. Sparse Coding Based Disaggregation

If there are multiple movers in the propagation channel,
the received signal at the radar receiver is the aggregate
Xagg from all of these targets, as shown in Fig. 1:

Xagg = �I
i=1Xi . (6)

Here, Xi are the radar signals from ith target class. Our
aim is to disaggregate Xagg into the constituent components
X′

1 . . . X′
I belonging to I different classes. First, the dictio-

naries from all the classes are combined together to form
a set: D(1:I ) = [D1 . . . DI ]. Then, we solve for the sparsest
solution Ẑ1:I for each class i, as shown in the following
equation:

Ẑ1:I = min
Ẑ1:I

∥
∥Xagg − D1:I Ẑ1:I

∥
∥

2

F
+ λ1

∥
∥Ẑ1:I

∥
∥

1 . (7)

The intuition behind this technique is as follows. If Di is
trained to reconstruct Xi , then it will be able to reconstruct
X′

i = DiẐi , which is the ith portion of the aggregate signal
better than any other Dj for j �= i. The assumption here
is that the dictionaries learnt for specific classes are dis-
criminative and have less coherence between them. If this
assumption does not yield satisfactory results, an additional

Fig. 2. Experimental setup using FieldFox VNA and two horn antennas
as monostatic radar at 7.5 GHz for detecting one or more targets (human

walking toward radar and human walking away from radar and TF).

constraint can be imposed on the dictionary learning algo-
rithm to ensure that the discrimination across dictionaries
is maximized [47], [48]. In our case, this was found to not
be necessary. Most of the active elements of Ẑ1:I should be
located in Ẑi where i is the class to which the signal be-
longs. Therefore, once the signal has been disaggregated,
the target i is detected if the strength

∥
∥Ẑi

∥
∥

2 is above a pre-
defined threshold (γT ). In other words, ideally, each target
signal is expected to lie in its own class subspace and all
the class subspaces are nonoverlapping.

C. Sparse Representation Based Classification

If we wish to simply classify the aggregate signal into
one of the I classes, we can directly use the learnt dictionar-
ies Di in the sparse representation based classifier (SRC)
[49]. The test signal will be assigned to the class î having
the least error amongst all class representations, as shown
in the following equation:

î = min
i

∥
∥Xagg − DiẐi

∥
∥

2

2 ∀i = 1, 2, . . . I. (8)

The classification algorithm is therefore not suited for
detecting multiple targets that are simultaneously present
in the channel. Note that in prior works the test signal was
assumed to consist of radar backscatter from only a single
target. Any backscatter from other moving objects in the
background were simply treated as noise. In contrast, we
consider the test signal to be the aggregate backscatter from
multiple targets (Xagg) and our objective is to detect all the
movers.

III. EXPERIMENTAL SETUP

The experiments were performed on four commonly oc-
curring classes of indoor moving targets: Human walking
toward the radar (FH), away from radar (BH), and walk-
ing in tangential direction before the radar (SH) and TF.
A monostatic continuous wave Doppler radar configura-
tion was operated at 7.5 GHz, as shown in Fig. 2. Our
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Fig. 3. Doppler spectrogram of (a) human walking away from radar, (b) human walking toward radar, (c) human walking tangentially before the
radar, and (d) rotating TF generated with monostatic radar at 7.5 GHz.

system comprised of two linearly polarized double-ridged
waveguide horn antennas (HF907), separated by a distance
of 50 cm, and N9926A FieldFox vector network analyzer
(VNA). The backscattered radar returns from targets were
gathered from time-domain S21 measurements of the VNA,
which were subsequently processed in MATLAB. Our radar
system is capable of a dynamic range of approximately
100 dB with a noise floor of −120 dBm. The measure-
ments were conducted in an indoor environment under line-
of-sight conditions. The targets always moved within the
field-of-view of the radar antennas. The duration of each
measurement was 2.7 s with 1000 samples. Each measure-
ment was further repeated five times resulting in a signal
of size [1000 × 5]. Measurement data were gathered from
40 human subjects (with varying gaits, heights, and veloci-
ties) and a TF (with different angular velocities, distances,
and orientations with respect to the radar). The human sub-
jects moved roughly between 1 and 9 m in front of the
radar. These data were gathered in single, two, three, and
four targets scenarios. The complete dataset and its detailed
description is available in the appendix.

Fig. 3 shows the Doppler spectrograms generated from
measured data gathered from a single target scenario using

short time-frequency transform. When the human is walk-
ing away from the radar (BH), the Dopplers, as shown in
Fig. 3(a), are mostly negative except for the back swing
from the arms and legs. The strength of the Dopplers de-
crease with time as the distance from the radar increases.
On the other hand, the Dopplers are mostly positive, in
Fig. 3(b), when the human is walking toward the radar
(FH). The Doppler spread is directly a function of the ve-
locity and height of the human since the feet give rise to the
maximum absolute values of Dopplers. When the human
is walking tangentially before the radar (SH), the Dopplers
are less pronounced, as shown in Fig. 3(c), though their
strengths are similar to the FH and BH cases. This is due to
the low Doppler shift that arises from the target’s cross line-
of-sight motion with respect to the radar. The periodicity in
the Dopplers correspond to the gait of the human. Fig. 3(d)
shows the spectrogram due to the three rotating blades of
the TF. The Dopplers here are a function of the blade length,
the angular velocity, and the orientation of the fan. Due to
low sampling frequency limits imposed by the VNA, alias-
ing can be observed in the spectrogram. However, this is
ignored since the purpose of through-wall radars is mostly
to detect humans.
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TABLE I
Disaggregation Algorithm for Detection of Multiple Target

Classes

A. Training Data

About 75% of the measurement data gathered in the
single target scenario for the four target classes (XTR

FH, XTR
BH,

XTR
SH and XTR

TF ) were used for training purposes. As a re-
sult, the training signal matrix for both the target types—
humans and TF is of size [1000 × 150]. During stage 1
of Table I, class specific dictionaries (DFH, DBH, DSH,
and DTF) are learnt from the training data correspond-
ing to the four targets. We examined dictionaries of size
[1000 × 500] for all the target types, for four different val-
ues of λ = 0.0001, 0.001, 0.01, 0.1, We finally adopted the
dictionaries with the least error of signal representation.

B. Test Data

Our training and test scenarios are not identical. They
differ in the following key ways: First, the test data were
gathered from a different set of subjects than the training
data; second, the data Xagg were gathered in two, three,
and four target scenarios (as opposed to the single target

scenario for training data). In both the training and test
cases, the humans and fans were placed in different loca-
tions and orientations with respect to the radar. Then, Xagg

and the concatenated dictionaries were used as input to the
sparse coding based disaggregation algorithm described in
stage 2 of Table I to obtain constituent signal components
from different movers. A target i was detected if the strength
of disaggregated coefficient ||Ẑi ||2 was greater than a prede-
fined threshold value for human targets and for TF, which
was determined empirically from the noise floor of the
measurements and the average radar cross section of the
targets. In the absence of prior works on disaggregation of
micro-Doppler data, we compare the performance of the al-
gorithm with the classification algorithm described in (8).
Each test case is assigned to the class i that gives rise to
the minimum residue between the test data Xagg and Di , Zi .
Thus, the classification algorithm can be used to identify
the presence of only a single target in the channel. Strictly
speaking, the disaggregation and classification algorithms
therefore have different objectives and only the former is
suited for the simultaneous detection of multiple targets.

IV. RESULTS

In this section, we examine the performance of the dis-
aggregation and classification algorithms.

A. Doppler Spectrograms of Disaggregated Signals

The dictionary learning based algorithm is a supervised
learning technique where the target classes must be known
prior to detection. We consider a three target class scenario
where the algorithm must detect the presence of one or
more of three targets (FH, BH, or TF) on the basis of dis-
aggregation of backscatter signals. First, we qualitatively
compare the Doppler spectrograms generated from the dis-
aggregated components with the previously shown spec-
trograms in Fig. 3. The Doppler spectrograms in all of the
cases are generated with the short time Fourier transform
with a dwell time of 54 ms. In the first case, we consider
a two target scenario a human walking toward the radar
(FH) and a TF are present in the channel. The radar cross
section of the human is greater than that of the fan. The
spectrogram in Fig. 4(a) shows radar backscatter from both
the targets with corresponding micro-Doppler features. The
micro-Dopplers overlap at certain frequencies. If these ag-
gregated data are directly used for classification, it is quite
likely that the target will be assigned to class FH due to
the strength of its returns. Fig. 4(b)–(d) shows the spectro-
grams generated from the disaggregated components and
the advantages of the proposed algorithm. We clearly ob-
serve targets belonging to the classes FH [see Fig. 4(b)]
and TF [see Fig. 4(d)] while there is no target belonging
to the class BH [see Fig. 4(c)]. Note that the strength of
the disaggregated components [Fig. 4(a) and (c)] slightly
differ from what is observed in the aggregate signal [see
Fig. 4(a)]. This may be attributed to the interference be-
tween the signals belonging to the different classes in the
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Fig. 4. Doppler spectrogram of (a) aggregate micro-Doppler from a human walking toward the radar and a rotating TF, (b) disaggregated
micro-Doppler of human walking toward radar (indicating presence of target), (c) disaggregated micro-Doppler of human walking away from radar

(indicating absence of target), and (d) disaggregated return of rotating TF (indicating presence of target).

Fig. 5. Doppler spectrogram of (a) aggregate micro-Doppler from two humans, one walking toward the radar and one walking away from radar, (b)
disaggregated micro-Doppler of human walking toward radar (indicating presence of target), (c) disaggregated micro-Doppler of human walking away

from radar (indicating presence of target), and (d) disaggregated return of rotating TF (indicating absence of target).

aggregate signal. Another two target scenario is when two
humans are walking one toward and the other away from
the radar (FH and BH). This is a more challenging scenario
since the radar cross sections of the two humans are compa-
rable. The spectrogram shown in Fig. 5(a), clearly indicates
both positive and negative micro-Dopplers emanating from
the two targets. There is still some overlap between the
micro-Dopplers from the back swing of the arms and legs.

Due to the similarity in the strength of the returns from both
the targets, the classification algorithm, based on these ag-
gregate data, is quite likely to be confused between classes
FH and BH. The spectrograms from the disaggregated com-
ponents, on the other hand, clearly indicate the presence of
FH [see Fig. 5(b)] and BH [see Fig. 5(c)], and the absence of
TF [see Fig. 5(d)]. The disaggregation algorithm, however,
does seem to not correctly pick out the highest Dopplers
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Fig. 6. Doppler spectrogram of (a) aggregate micro-Doppler from two humans, one walking toward the radar and one walking away from radar and a
rotating TF, (b) disaggregated micro-Doppler of human walking toward radar (indicating presence of target), (c) disaggregated micro-Doppler of

human walking away from radar (indicating presence of target), and (d) disaggregated return of rotating TF (indicating presence of target).

TABLE II
Classification of Radar Data Across Human Walking Toward

Radar (FH), Human Walking Away From Radar (BH) and
Rotating TF Classes

Cases( T/P) FH (%) BH (%) TF (%)

Single target-FH 92 8 0
Single target-BH 6 94 0
Single target-TF 20 10 70
Two targets-FH + TF 82 10 8
Two targets-BH + TF 6 84 10
Two targets-FH + BH 52.5 47.5 0
Three targets-FH + BH + TF 40 60 0

Here P is the predicted class and T is the true class.

arising from the motion of the feet. This may be due to the
variation in the training data corresponding to humans of
different heights. Finally, we consider a three target scenario
when radar returns from all three moving targets (FH, BH,
and TF) are present. The spectrogram of aggregate signals,
shown in Fig. 6(a), indicates that the aggregate data may
be confused mostly between FH and BH since the returns
from TF are weaker. In contrast, the spectrograms of the
disaggregated components shown in Fig. 6(b)–(d) indicates
that all three targets will be correctly detected.

B. Classification Results for SRC

We classified the measurement data belonging to the
single, two, and three target scenarios into one of three
classes (FH, BH, or TF) using the SRC algorithm discussed
in Section II-C. The results are presented in Table II. In
the single target scenario case (FH/BH/TF), the classifier

most often picks the correct class for the target. The av-
erage accuracy for this scenario is 85%. This confirms the
hypothesis that micro-Doppler signatures are useful tools
for classifying moving targets. For comparison purposes,
we also applied the single target data with LC-KSVD al-
gorithm reported in [50] and obtained 75% classification
accuracy. The classifier is mostly confused between the FH
and BH classes. Next, we examine the performance of the
algorithm when multiple targets are present in the chan-
nel. The results for the two targets scenarios FH + TF and
BH + TF, cases show that the classification performance is
skewed toward the targets with the stronger radar cross sec-
tion (humans). In other words, the returns from the weaker
targets (TF) are treated as noise by the algorithm. On the
other hand, when both the targets are humans (FH + BH),
and therefore, of comparable radar cross sections, the clas-
sifier pretty evenly distributes the cases between them. In
the case of the three target scenario (FH + BH + TF), the
classification accuracy is again skewed toward the stronger
targets (humans) in favor of the weaker TF. These results
show that the classifier can accurately detect the strongest
target when all other moving objects in the background
give rise to much weaker returns. The performance of the
classifier deteriorates when there are multiple targets with
comparable backscatter.

C. Detection Results After Disaggregation of Micro-
Doppler Data

The disaggregation algorithm, unlike the classification
algorithm, is meant for the detection of multiple targets.
This time, we consider measurement data from four target
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TABLE III
Detection Based on Disaggregation of Data From Human Walking Toward Radar (FH) and Human

Walking Away From Radar (BH) and Rotating TF

Scenario( T/P) True detections (%) Missed detections (%) False alarms (%)

Single target-FH FH:100 FH:0 FH:NA
BH:NA BH:NA BH:4
TF:NA TF:NA TF:14

Single target-BH FH:NA FH:NA FH:12
BH:100 BH:0 BH:NA
TF:NA TF:NA TF:8

Single target-SH FH:NA FH:NA FH:0
BH:NA BH: NA BH:0
TF:NA TF:NA TF:0
SH:100 SH:0 SH:NA

Single target-TF FH:NA FH:NA FH:2
BH:NA BH: NA BH:0
TF:94 TF:6 TF:NA

Two targets-FH + TF FH:88 FH:12 FH:NA
BH:NA BH: NA BH:12
TF:94 TF:6 TF:NA

Two targets-BH + TF FH:NA FH:NA FH:28
BH:94 BH:6 BH:NA
TF:96 TF:4 TF:NA

Two targets-FH + BH FH:87.5 FH:12.5 FH:NA
BH:80 BH:20 BH:NA
TF:NA TF:NA TF:52.5

Two targets-SH + TF FH:NA FH:NA FH:22
BH:NA BH: NA BH:0
TF:98 TF:2 TF:NA

SH:100 SH:0 SH:NA

Three targets-FH + BH + TF FH:95 FH:5 FH:NA
BH:90 BH:10 BH:NA
TF:90 TF:10 TF:NA

Three targets-SH + FH + TF FH:95 FH:5 FH:NA
BH:NA BH: NA BH:0
TF:100 TF:0 TF:NA
SH:100 SH:0 SH:NA

Three targets-SH + BH + TF FH:NA FH:NA FH:25
BH:95 BH: 5 BH:NA
TF:100 TF:0 TF:NA
SH:100 SH:0 SH:NA

Four targets-FH + BH + TF + SH FH:87.5 FH:12.5 FH:NA
BH:67.5 BH: 32.5 BH:NA
TF:100 TF:0 TF:NA
SH:100 SH:0 SH:NA

Average 94 6 11

class labels (FH, BH, SH, and TF). The resultant detection
accuracies for the single, two, three, and four targets sce-
narios are presented in Table III. We achieve an average
true detection accuracy of 98.5% for the four single target
scenarios (FH/BH/SH/TF) while the false alarm was 4.4%.
When we examine the two target scenarios—we are now
able to detect both the targets in 88% of the FH + TF cases,
94% in BH + TF cases, 80% in FH + BH, and 98% in SH
+ TF cases. This result demonstrates the usefulness of the

disaggregation algorithm when compared to the classifica-
tion algorithms for the detection of multiple targets. We
were able to detect the weak target (TF) in the presence
of strong targets (FH, BH, and SH). We were also able
to detect two targets of comparable returns. However, the
limitation is that we have a high false alarm rate. This
is because when two targets are present, there is a high
probability of the overlap of the signals in the frequency
domain. We investigate the performance of the proposed
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TABLE IV
Dataset Description

Target scenario and
description

Target parameters Training Data Test Data

Single target- Number of subjects: 40
FH, BH, SH Target heights: 5 to 6 150 50

Target velocities: 0.6 to 1.5 m/s (5 measurements from of
the 30 subjects)

(5 measurements from of
the 10 subjects)

Number of measurements = 200 (5 measurements
from each of the 40 subjects)

Single target- Number of fans: 1
TF Angular velocities: 1400 r/min,

2000 and 2600 r/min 150 50
Locations from the radar: 8 (10 measurements from

each of the 15 cases)
(10 measurements from

each of the 5 cases)
Number of measurements = 240 (10 measurements
from each of the 24 cases)

Two targets- Number of humans: 5
FH + TF, Number of fans: 1 50
BH + TF, Locations of fan: 2 0
SH + TF Number of measurements: 50 (5 measurements

from each of the 5 × 2 cases)
(No training data) (All measurement data

are used for testing)

Two targets- Number of humans walking toward radar: 2
FH + BH Number of humans walking away from radar: 2 0 40

Number of measurements: 40 (10 measurements
from each of the 4 cases)

(No training data) (All measurement data
are used for testing)

Three targets-
FH + BH + TF,
FH + SH + TF,
BH + SH + TF

Number of humans: 2
Number of fans: 1 0 20
Number of measurements: 20 (10 measurements
from each of the 2 cases)

(No training data) (All measurement data
are used for testing)

Four targets- Number of humans: 3
FH + BH + SH + TF Number of fans: 1 0 20

Number of measurements: 20 (10 measurements
from each of the 2 cases)

(No training data) (All measurement data
are used for testing)

algorithm in the three target scenario. When three targets
move simultaneously, it is almost impossible to not have
micro-Doppler overlap. Despite this, the algorithm detects
all three targets in 96% of the cases. Obviously, the humans
are favored (more than 95% detection accuracy) since they
have the stronger radar cross sections. Finally, we tested
our approach in four target scenario where FH, BH, SH,
and TF moved simultaneously in the same channel. Here,
detection accuracies for SH and TF are 100% whereas for
FH it is 87.5%. For the case of BH the accuracy dropped to
67.5%, this can be attributed to the weaker return signals in
some of the BH cases in comparison to SH and FH.

V. CONCLUSION

We used supervised dictionary learning techniques to
represent micro-Doppler from dynamic targets. These dic-
tionaries result in sparser representations of the radar sig-
nals than the classical data-independent dictionaries such as
wavelets or Fourier. Hence, they can be used to accurately
classify targets in single target scenarios. However, the real
advantage of these dictionaries is realized in multi-target
scenarios. The dictionaries can be used to disaggregate the
superposed radar signals obtained from multiple targets into

individual components. This enables the detection of weak
targets in the presence of stronger returns. We have eval-
uated the algorithms performance in detecting four indoor
targets, three humans, and a TF. The overall detection ac-
curacy across single, two, three, and four targets scenarios
is 94% and the false alarm rate is 11%. Note that the false
alarm values are not a function of the threshold selected in
the algorithm and are instead due to the limitations in the
dictionary learning algorithm. The discrimination capabil-
ity of the dictionaries is governed by the degree of overlap
in the micro-Dopplers. In all of the above-mentioned cases,
we have assumed that each target class (FH, BH, SH, or TF)
consists of only a single target. The algorithm can be ap-
plied to disaggregate data where each class may comprise
of several targets. However, we will need to incorporate
additional complexity (hardware or software) to determine
the actual number of targets within each class.

APPENDIX

See Table IV.
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[9] M. K. Baczyk, P. Samczyński, K. Kulpa, and J. Misiurewicz
Micro-doppler signatures of helicopters in multistatic passive
radars
IET Radar, Sonar Navig., vol. 9, no. 9, pp. 1276–1283, 2015.

[10] P. Molchanov, K. Egiazarian, J. Astola, A. Totsky, S. Leshchenko,
and M. P. Jarabo-Amores
Classification of aircraft using micro-doppler bicoherence-
based features
IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2,
pp. 1455–1467, Apr. 2014.

[11] V. C. Chen and H. Ling
Time-Frequency Transforms for Radar Imaging and Signal
Analysis. Norwood, MA, USA: Artech House, 2002.

[12] Z. Zhang, P. O. Pouliquen, A. Waxman, and A. G. Andreou
Acoustic micro-doppler radar for human gait imaging
J. Acoust. Soc. Amer., vol. 121, no. 3, pp. EL110–EL113, 2007.

[13] Y. Kim and H. Ling
Human activity classification based on micro-doppler signa-
tures using a support vector machine
IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5,
pp. 1328–1337, May 2009.

[14] B. G. Mobasseri and M. G. Amin
A time-frequency classifier for human gait recognition
Proc. SPIE, vol. 7306, 2009, Art. no. 730628.
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