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Abstract- Micro-Doppler signatures of dynamic indoor targets 
(such as humans and fans) serve as a useful tool for classification. 
However, all the current classification methods are limited by the 

assumption that only a single target is present in the channel. In 
this work, we propose a method to classify multiple targets that 
are simultaneously present in the channel on the basis of a single 

channel source separation technique. We apply sparse coding 
based dictionary learning (DL) algorithms for disaggregating 
micro-Doppler returns from multiple targets into its constituent 

signals. The classification is subsequently carried out on the 
disaggregated signals.  We have tested the performance of the 
proposed algorithm on simulated human and fan data. 

I. INTRODUCTION 

      Radar backscatter from non-rigid dynamic targets 

frequency modulate the carrier signal from continuous wave 

radars and give rise to micro-Doppler features (mD) in the joint 

time-frequency space [1-3]. These mD signatures have been 

used for target classification for purposes such as law 

enforcement, surveillance and search and rescue missions [4-

10]. In [4], authors used spectral analysis to discriminate mD 

signatures corresponding to different micro-motions. In [5], the 

time domain information of the backscattered signal was used 

as an input to dynamic time warping algorithms for 

classification purposes. Authors in [6-7] used heuristic methods 

while [8] employed principle component analysis (PCA) and 

independent component analysis (ICA) to extract features from 

time-frequency spectrograms for classification. Empirical 

mode decomposition (EMD) achieved classification accuracy 

up to 90% in [9]. All of these schemes used supervised learning 

methods that require domain specific knowledge. In [10], Kim 

deployed a deep convolution neural network (DCNN), an 

unsupervised feature learning method, for human activity 

classification.  

      All of the existing methods have however made one 

fundamental assumption – that the channel consists of only a 

single target during classification. But, in real world scenarios, 

backscattered signals, especially in indoor environments, may 

comprise of aggregated signals from multiple targets. For 

instance, a room may comprise of humans and other moving 

targets such as fans, speakers etc. all of which give rise to mD 

returns. Therefore, separating these returns into their 

constituent signals must be the preliminary step before 

classification. Otherwise, target detection and classification 

will be significantly distorted by the interference from multiple 

targets. This problem can be therefore framed as single channel 

source separation (SCSS) problem. SCSS has been previously 

used in medical imaging, energy disaggregation in smart grids, 

and speech processing applications [11-12]. 

       In this paper, we have addressed this SCSS problem using 

dictionary learning (DL) based on sparse coding for 

disaggregation of mD returns from multiple targets. We 

simulate data from two classes of moving targets- walking 

humans and rotating fan. The superposed returns of the targets 

belonging to the two class are separated using the proposed 

method. The performance of the classification algorithms are 

compared for the aggregate returns and disaggregated returns. 

We demonstrate that in the case of multiple targets, the 

classification accuracy significantly improves provided the 

disaggregation is first carried out.  

II. THEORY 

A. Sparse Coding Based Dictionary Learning for 

Disaggregation and Classification 

A dictionary, B, is a set of vectors, which can be linearly 

combined to represent any signal X.  

                                      X = BA                                  (1) 

The DL algorithm automatically learns discerning features and 

classification boundaries from the training dataset by 

optimizing a specified loss function in an unsupervised manner. 

Since the algorithm involved unsupervised learning, it 

overcomes the limitations associated with fixed representation 

matrices for signals such as wavelets, mathematical transforms 

and filter banks. A dictionary is an overcomplete representation 

of a signal that not only captures the discontinuities present in 

the signal but, also provides a sparse representation of the 

signal. Learning a dictionary from a training dataset 𝑋 ∈ ℝ𝑀×𝑁, 

where 𝑀 is the dimension of the signal vector and 𝑁 is the 

number of signal vectors, is a two stage process as described in 

TABLE 1. At the first stage, a dictionary 𝐵 ∈ ℝ𝑀×𝑃, an 

overcomplete representation having greater number of columns 

than the signal dimension 𝑀 given by  𝑃 ≫ 𝑀 , is initialized 

randomly and 𝐴 ∈ ℝ𝑃×𝑁 is the corresponding sparse coefficient 

matrix. Sparse coefficients are obtained using matching pursuit 

algorithms such as orthogonal matching pursuit (OMP) [13], 

employing 𝑙0 minimization technique. As solving 𝑙0 is NP-hard, 

it can be relaxed to 𝑙1 minimization using basis pursuit (BP) 

algorithms [14].  Once the sparse coefficients are extracted, the 

dictionary is updated using a simple least squares approach. 

Each column of dictionary is normalized to have a norm less 

than unity.  There are several algorithms such as KSVD and 

method of optimized directions (MOD) for learning dictionaries  
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TABLE 1. DICTIONARY LEARNING FRAMEWORK 

 

Input: Training data matrix 𝑿 ∈ ℝ𝑴×𝑵, 𝝁 ∈ ℝ is the 

regularization parameter and 𝝈 is a noise variance 

Loop until convergence 

Stage 1: Sparse coding 

            {𝑨} = 𝐦𝐢𝐧
𝑨

‖𝑿 − 𝑩𝑨‖𝑭
𝟐   s.t. ‖𝑨‖𝟎 < 𝝈  using 𝒍𝟎 

Or 

            {𝑨} = 𝐦𝐢𝐧
𝑨

‖𝑿 − 𝑩𝑨‖𝑭
𝟐 + 𝝁‖𝑨‖𝟏    using 𝒍𝟏 

Stage 2: Dictionary update 

{𝑩} = 𝐦𝐢𝐧
𝑩

‖𝑿 − 𝑩𝑨‖𝑭
𝟐                                                                             

s.t ‖𝒃𝒊‖𝟐
𝟐 ≤ 𝟏  𝒇𝒐𝒓 ∀ 𝒊 = 𝟏, 𝟐, … . . 𝑵 

End 

 

from the datasets [15]. In this work, we use iterative least 

squares dictionary learning algorithm (ILS-DLA) for updating 

each column of matrix in every iteration [16]. Once the 

dictionaries are learnt, they can be directly used to classify test 

signals. Alternately, the DL framework can be further extended 

to solve SCSS (or disaggregation) problems. In this work, we 

compare the performance of direct classification using 

dictionary learning and the  

  Consider 𝐶 diverse classes having training data 

matrices 𝑋𝑘 ∈ ℝ𝑀×𝑁, for every class 𝑘 = 1,2, … . . , 𝐶, where 

column 𝑥𝑘
𝑗
 represents 𝑗𝑡ℎ  signal vector from 𝑘𝑡ℎ  class. The 

objective of the method is to separate aggregated signals 

𝑋𝑎𝑔𝑔 = ∑ 𝑋𝑘
𝐶
𝑘=1  into their constituents 𝑋̂1, 𝑋̂2, … 𝑋̂𝑘. . , 𝑋̂𝐶 . The 

task of disaggregation is achieved using the algorithm 

illustrated in TABLE 2. The main intuition behind the proposed 

method is if 𝐵𝑘 is trained to reconstruct 𝑋𝑘 with least error of 

reconstruction, then it must reconstruct the 𝑘𝑡ℎ portion of 

aggregate signal 𝑋𝑚𝑖𝑥𝑒𝑑  better than any other 𝐵𝑙  for 𝑙 ≠ 𝑘. The 

proposed method assumes that the dictionaries learnt for 

different classes are discriminative, less coherent and must give 

significant amount of disaggregation. For classification of 

separated signals, sparse representation based classification 

(SRC) is used in TABLE 2 [17]. It simply selects the class 

having minimum representation error amongst all classes under 

test, using the concatenated dictionaries. This classification step 

can be applied on any test signal 𝑋̂𝑘 either before or after 

disaggregation. In order to illustrate the benefits of 

disaggregation – we compare the performance of the 

classification algorithms on the aggregated (mixed) data from 

multiple targets with the performance on the disaggregated 

returns.    

B. Simulation of Walking Human and Fan 

To demonstrate the application of DL based disaggregation 

technique on mD signatures, we have simulated time domain 

returns from two classes of moving targets- walking human and 

a rotating ceiling fan. We have used a point scatterer model for 

modelling the targets backscatter [18-19]. The kinematic 

description of the human is derived from the human walking 

TABLE 2. DISAGGREGATION AND CLASSIFICATION ALGORITHM 

BASED ON SPARSE CODING 

 

Input: Class specific dictionaries 𝑩𝒌 ∈ ℝ𝑴×𝑵,for 𝒌 =
𝟏, 𝟐, … , 𝒄, 𝒄 is the number of classes, 𝝁𝟏 ∈ ℝ is the 

regularization parameter  

Stage 1: Disaggregation of 𝑿𝒎𝒊𝒙𝒆𝒅 signal using learnt class 

specific dictionaries from 𝒄 different classes concatenated 

together,  𝑩𝟏:𝒄 = [𝑩𝟏 𝑩𝟐 . . 𝑩𝒄]  

(a) Loop until convergence 

           {𝑨̂𝟏:𝒄} = 𝐦𝐢𝐧
𝑨̂𝟏:𝒄

‖𝑿𝒂𝒈𝒈 − 𝑩𝟏:𝒄𝑨̂𝟏:𝒄‖
𝑭

𝟐
+ 𝝁𝟏‖𝑨̂𝟏:𝒄‖

𝟏
   

              end 

(b) Predict  𝑿̂𝒌 = 𝑩𝒌𝑨̂𝒌 , for  𝒌 = 𝟏, 𝟐, … . . 𝒄 

Stage 2: Classification using SRC 

(a) Classification before disaggregation 

Loop until convergence 

              𝒄 = 𝐦𝐢𝐧
𝒌

‖𝑿𝒂𝒈𝒈 −  𝑩𝒌𝑨̂𝒌‖
𝟐

𝟐
  𝒇𝒐𝒓  ∀ 𝒌 = 𝟏, 𝟐, … 𝒄 

              end 

(b) Classification after disaggregation 

      Loop until convergence 

                   𝒄 = 𝐦𝐢𝐧
𝒌

‖𝑿̂𝒌 − 𝑩𝒌𝑨̂𝒌‖
𝟐

𝟐
  𝒇𝒐𝒓  ∀ 𝒌 = 𝟏, 𝟐, … 𝒄 

             End 

 

model developed by Boulic, et. al. [18], based on biomechanical 

experimental data. In this model, the dynamics of human 

motion are described using 12 time dependent trajectories that 

control the location of 17 reference points on the human body. 

These are the head, shoulders, the neck, two knees, spine base, 

hips, elbows, ankles and toes. These trajectories are analytic 

expressions and functions of two parameters - the height of the 

human and the relative velocity of the human. Thus by varying 

these two parameters, a corresponding variety of human motion 

descriptions can be derived. The aggregate received signal is 

composed of returns from these 17 points representing the 

human body as shown in Fig. 1(a). The joint time-frequency 

signature of the mD returns is derived using short time 

frequency transform (STFT) with a Gaussian window of size 

0.02sec as shown in Fig. 1(c). The human walks along the XY 

plane and is upright along the Z axis. 

       The rotating fan is modelled using a 3 point scatterer 

model, where the point scatterers are situated mid-way on 3 

rectangular blades as shown in Fig. 1(b). The scattered returns 

from the fan are a function of three parameters – the angular 

velocity of the motion, and the length and width of the blades. 

The fan is hung along the Z axis and the blades move circularly 

along the XY plane. The backscattered signal is the 

superposition of returns from all 3 point scatterers as shown in 

Fig. 1(d).  
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III. SIMULATION RESULTS 

To validate the performance of the proposed algorithm, we 

simulated the radar returns of two targets- human walking 

towards the radar and the rotating fan, at a carrier frequency of 

2.5 GHz. The duration of the signal is 1 second and a sampling 

frequency of 1 KHz is chosen to prevent aliasing. Therefore, 

each signal vector is of size [1000 x 1].  The geometry of the 

room, the location of the monostatic radar and fan as well as the 

path of the human considered in the problem are depicted in 

Fig. 2. We vary the human parameters (height and relative 

velocity) and the fan parameters (blade length, width and 

angular velocity) to simulate data for multiple unique cases. We 

vary the human heights from 1.6002m to 1.8288m and relative 

velocity ranging between 1 (𝐻𝑡/sec) and 1.9 (𝐻𝑡/sec), where 𝐻𝑡  

is the height from toe to hip as mentioned in [18]. Similarly, in 

the case of the fan, we vary the blade lengths between 0.60m to 

0.80m, the blade widths between 0.09m to 0.12m and angular 

velocities between 300 RPM to 500 RPM. Overall, 300 unique 

human and fan cases were generated out of which we used 80% 

of the data for training and 20% for the testing purposes with 

five-fold cross validation. Thus the training matrix for each 

class was of size[1000 × 240] . From this, we used the 

techniques described in TABLE. 1 to learn human and fan 

overcomplete dictionaries of size [1000 × 4000] each. We 

tested our algorithm for disaggregation and classification using 

test data of size [1000 × 60], comprising of aggregated returns 

from both human and fan. The aggregated data is derived by 

simply superposing the time domain data from both the 

individual cases. 

 

  

 

 

 
 

 
 

                                              

 
 

        

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
Fig. 1 (a) Point scatterer model of walking human, (b) Point scatterer model of 

rotating fan about y-axis, Spectrogram using STFT of (c) human walking 

towards radar, (d) rotating fan 
 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Geometry of the room 

 

      Then for each test case, the dictionaries of both classes were 

concatenated. Using the first stage of the algorithm described in 

TABLE.2, we reconstructed the discrete components belonging 

to each class under test. The algorithm was allowed to run for 

maximally 500 iterations in MATLAB on a 2.4GHz Intel 

processor. Fig. 3(a) shows the spectrogram corresponding to the 

aggregate signal from one test case comprising both the human 

and fan returns. By comparing this figure to Fig. 1(c) and (d), it 

is evident that the spectrogram shows features belonging to both 

the targets. Hence, it is quite likely that the classification 

algorithms will not be capable of correctly classifying the 

aggregated signal. In other words, the classifier is likely to 

detect the target with the stronger radar cross-section. A 

thresholding criterion was applied on the sparse coefficients 

obtained after disaggregation. These coefficients correspond to 

each class and hence the constituent signals can be 

reconstructed using these coefficients. Therefore, a target is 

detected only if the corresponding coefficients are above the 

threshold. The spectrograms generated from the disaggregated 

signals corresponding to the human and the fan are shown in 

Fig. 3(b) and Fig. 3(c) respectively.  Both of these figures show 

significant similarity to Figs. 1(c) and 1(d) respectively. There 

is error in the frequency regions of overlap between the two 

targets. However, some of the distinctive features (such as the 

frequency span and the periodicity) are retained in the 

disaggregated spectrograms. Therefore, the classification 

algorithms are likely to perform well on the disaggregated 

signals. 

     We classified the aggregated test signals before applying the 

proposed disaggregation algorithm and evaluated the 

performance of classifier. Next, we performed the 

disaggregation processing, and presented the separated 

constituents for target detection and classification. In both cases 

(before and after disaggregation), the SRC classifier is used. In 

TABLE 3, the classification accuracies for three scenarios (each 

with 60 test cases) have been presented. In the first scenario, 

only a single target, the human, is assumed to be present. In the 

second scenario, only the fan is assumed to be present and in 

the third scenario, both the human and fan are assumed to be 

present. The ground truths reflect these three scenarios in the 

table. Then the classification results for before disaggregation 

(b) (a) 

X 

Y 
Z 

Z 
Y 

X 

𝜷 

𝜶 Radar 

(c) (d) 

Origin (0, 0, 0) 

Y-axis 

X-axis Radar (8, 0, 0) 

Fan (4, 0, 2.5) 

Human 
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(BD) and after disaggregation (AD) are presented. The results 

show that in the case of the single target, SRC classifier 

correctly identifies the targets using their corresponding 

dictionaries. However, in the case where two targets are present 

simultaneously, the algorithm detects the human but is not 

capable of identifying the fan possibly since the RCS of the 

humans are greater than the fan. However, after disaggregation, 

both the human and fan are correctly identified. From these 

results it becomes evident, that dictionary learning without 

disaggregation is successful in detecting single targets in a 

channel. However, an additional step of disaggregation is 

required for detecting and classifying multiple targets in the 

same channel. 

 

 

  

 

  

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 
Fig. 3 (a) STFT of aggregate m-DR from human walking towards radar, and 

rotating fan, (b) STFT of disaggregated m-DR of human walking towards radar 
and (c) rotating fan  

 

TABLE 3. CLASSIFICATION ACCURACY OF PROPOSED METHOD BEFORE 

AND AFTER DISAGGREGATION USING FIVE- FOLD CROSS VALIDATION 

 

Cases  

 

Classification 

Human towards 

radar (%) 

 

Rotating fan 
(%) 

Single target- 

Walking Human  

Ground truth 100 0 

BD 100 0 

AD 100 0 

 
Single target- 

Rotating fan 

Ground truth 0 100 

BD 0 100 

AD 0 100 

Two targets 

Walking human 
and fan 

Ground truth 100 100 

BD 100 0 

AD 100 100 

 

 

IV. CONCLUSION 

In this paper, we applied sparse coding based dictionary 

learning to characterize the mD from indoor dynamic targets for 

detection and classification purposes. The main advantage of 

the algorithm is that it learns features in an unsupervised 

manner by selecting an appropriate level of sparsity thus, 

relaxing the necessity of domain specific knowledge of the 

features. The algorithm performs single channel source 

separation to disaggregate the time domain mD from multiple 

targets. This enables the detection and classification of weak 

targets that would otherwise be missed.  
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