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Abstract

Keywords-Micro-Dopplers, indoor radar, target detection, classification, radar
imaging, machine learning, sparse coding, dictionary learning, single-channel
source separation, Denoising autoencoders, stochastic FDTD

Indoor radars have been researched and developed to detect and monitor hu-
mans for applications that range from law enforcement, security and surveil-
lance purposes to ubiquitous sensing applications such as smart home or occu-
pancy detection, assisted living, and, bio-medical applications. These radars
are typically phase synchronized to obtain Doppler information of human mo-
tions. Humans are non-rigid bodies. The movements of the arms and legs
of the humans modulate the carrier frequency of the radar signal giving rise
to micro-Doppler features in the radar returns. Research in micro-Dopplers
has focused primarily on classifying different human activities, distinguishing
between armed and unarmed personnel, and anomaly detection (such as fall
detection). There are, however, some limitations associated with the current
state-of-the-art methods using low complexity continuous wave (CW) micro-
Doppler radars. This dissertation investigates signal processing, and machine
learning assisted solutions for advancing the current state of the art techniques
for mainly three tasks- target detection, target classification, and target imaging
with indoor micro-Doppler radar.

Firstly, Doppler sensors are capable of detecting only a single dynamic target.
However, indoor environments typically consist of multiple movers - humans,
fans, and loudspeakers. When these multiple targets move simultaneously in
the propagation channel, their radar backscatter interferes, resulting in distorted
micro-Doppler signatures and poor classification accuracies. This limitation
may be partially overcome at the cost of increased hardware complexity, but
this would offset the inherent advantages of low cost, portable Doppler sen-
sors. Instead, we focused on investigating signal processing solutions to detect
multiple simultaneously moving targets. We presented a supervised dictionary
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learning approach to represent our micro-Doppler data. Since the resulting rep-
resentations or dictionaries are customized or fine-tuned to the underlying data
- as opposed to data independent transforms such as Fourier or wavelets - we
hypothesize that they will have greater success in actually resolving the micro-
Doppler signals. Superposed radar returns from multiple targets are resolved
into individual components based on their sparse representations.

Secondly, in the current works, the training and testing of micro-Doppler
signatures for classification have been carried out in the identical system and
environmental conditions. However, these conditions may often be necessar-
ily violated in real-world scenarios. For instance, situations may arise where
the propagation channel or the presence of interference sources in the test site
will permit only specific frequency bands of radar operation. These bands may
differ from those used previously while training. In this dissertation, we ex-
amine the data-driven signal processing algorithms that demonstrate versatility
in handling diversity in test and training data in real-life scenarios. We use
customized dictionaries learned from micro-Doppler radar data gathered at dif-
ferent carrier frequencies to obtain sparse representations which are highly dis-
criminative and characterize the target motion as opposed to the sensor parame-
ters. These features are subsequently used for classifying test data from another
distinct carrier frequency. Our experimental results show that the dictionary
learning algorithms are capable of extracting meaningful representations of the
micro-Dopplers despite the rich frequency diversity in the data.

Thirdly, there has been very limited research effort in imaging targets based
on micro-Doppler radar returns due to the considerable variations that may ex-
ist in the indoor propagation environment. For instance, if the radar is deployed
in through-wall settings, walls being dispersive and in-homogeneous mediums
may introduce considerable distortions such as attenuation, delay and multipath
to the radar returns, resulting in distorted radar images. In this dissertation,
we focus on mitigating wall effects using a machine learning-based solution-
denoising autoencoders- that does not require prior information of the wall pa-
rameters or room geometry. Instead, the method relies on the availability of
a large volume of training radar data gathered in through-wall conditions and
the corresponding clean data captured in line-of-sight conditions. We have val-
idated the performance of the denoising solution for both static and dynamic
human subjects.

In each of these cases, the signal processing and machine learning algorithms
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are trained to handle diversity in human motion characteristics, radar system pa-
rameters, and propagation channel conditions. However, the performances of
these machine learning algorithms are tied to a large volume of high-quality
training data. Therefore, we gathered a highly curated data set of simulated and
measured human micro-Dopplers in both line-of-sight conditions and through-
wall conditions. We have also presented a computationally efficient method
to model radar micro-Dopplers in indoor conditions by integrating the stochas-
tic finite-difference time-domain (sFDTD) technique with the primitive based
scattering center model of human radar returns. It captures diversity in the prop-
agation environment using a single simulation.
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Chapter 1

Introduction

Over the last decade, research and development of radar-based indoor sensing

technology have witnessed rapid growth. Radars offer many advantages com-

pared to other sensors such as camera, infrared/thermal detectors, and x-ray

sensors. Optical cameras are available at low prices, and automatic target recog-

nition based on camera images have been extensively researched. However,

they can not work in non-line-of-sight conditions as they have poor wall pene-

tration capabilities. X-ray signals possess both good wall penetration and high-

resolution imaging capabilities. However, the technology is expensive, and the

radiation can be potentially harmful to the sensor operators. Infrared sensing

results in a limited range. On the other hand, radars at microwave frequen-

cies below X-band make a safe sensing alternative that can operate 24/7 and

in non-line-of-sight scenarios. Radars are non-intrusive and typically easy to

deploy using low-cost commercial off the shelf components (COTS) [1]. Hu-

mans are generally slow-moving bodies whose translational motions introduce

a Doppler shift to the radar signals. Their micro-motions give rise to unique and
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discriminative signatures in the joint time-frequency space popularly known as

micro-Dopplers [2, 3]. The objective of indoor radar is to exploit these micro-

Doppler signals to detect and monitor humans and other concealed objects for

applications that range from law enforcement, security and surveillance pur-

poses to ubiquitous sensing applications such as smart home or occupancy de-

tection [4, 5], assisted living especially related to fall detection in elderly people

[6, 7, 8], and, bio-medical applications for non-intrusively monitoring patients

[9].

Micro-Dopplers have mostly been gathered by two types of coherent radars-

narrowband and broadband. Broadband radars provide excellent downrange

resolution. Some examples of wideband radars that have been used for gath-

ering micro-Doppler data are [10, 11]. Alternatively, narrowband CW radars

have been developed to detect dynamic targets based solely on their Doppler

information. With the advancement in the radar hardware, there has been con-

current growth in radar signal processing techniques for interpreting the signals.

Most of the current research have focused on using micro-Dopplers for classify-

ing different human activities, human gesture recognition, anomaly detection,

and distinguishing between armed and unarmed personnel. The algorithms

have ranged from heuristic techniques [12, 13], to more sophisticated meth-

ods based on principal component analysis [14, 15], independent component

analysis [16], empirical mode decomposition [17] and Hilbert Huang transform

[18]. Heuristic methods involve the extraction of handcrafted features - such

as torso Doppler and bandwidth of Doppler returns - from the spectrograms.
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Subsequently, studies have demonstrated that it may be far more efficient, in

realistic scenarios, to use automatic feature extraction techniques to derive the

most discriminating features from the radar data [19, 20]. In [21], the authors

determined the most informative features in the micro-Doppler signatures for

classification. Once the features are extracted, algorithms such as support vec-

tor machine [12, 17] and Bayesian classifier [22, 23] have been used for classi-

fication purposes.

With greater availability of digitally recorded data, almost unlimited memory

capacity and ever-increasing processing speeds of computers, there is spurred

growth in usage of deep learning assisted solutions in radar signal processing.

More recently, the authors in [13, 24, 25, 26, 27, 28] used deep convolution

neural networks (DCNN) which jointly learned informative features and classi-

fication boundaries without using an additional feature extraction algorithm.

Machine learning algorithms require humongous training databases - cap-

turing the diversity of human motion characteristics, sensor parameters, and

channel conditions - which are difficult to generate. Researchers have investi-

gated many different methods to overcome the challenge of limited measure-

ment databases. In [29], researchers augmented limited experimental data gath-

ered through measurements with simulated data using generative adversarial

networks based on deep neural networks. Researchers also used deep neural net-

work initialization methods for micro-Doppler classification with low training

sample support in [24, 30]. They used a transfer learning technique where pre-

trained networks from optical imagery (such as Alexnet, VGGNet, GoogleNet)
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were trained with a limited radar data set. Finally, researchers in [25, 26, 5] used

various data augmentation technique to generate larger databases synthetically

through operations such as flipping, time-shifting, or using generative adversar-

ial networks.

The essential functionality of the indoor radar in all these works has been

the classification of humans based on their micro-Doppler signatures. There

are, however, some limitations associated with the current methods using low

complexity micro-Doppler radars:

1. First, the works have assumed that the propagation channel consists of only

a single mover. When there are multiple movers, their returns interfere and

are difficult to classify. Hence, the signals from multiple movers must first

be disaggregated before the signal is classified.

2. Second, the classification algorithms have been trained and tested using

the data captured in identical environmental and system conditions. How-

ever, in real-world scenarios, the algorithms must be capable of handling

considerable diversity in channel conditions and sensor parameters.

3. There is very little literature on generating radar data from human returns

in non-LOS conditions. This is due to the considerable variations that may

exist in the propagation environment. For instance, if the radar is deployed

in through-wall settings, walls being dispersive and in-homogeneous medi-

ums may introduce considerable distortions such as attenuation, delay and

multipath to the radar returns.
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4. Finally, there has been a very limited effort in imaging targets in indoor con-

ditions based on their micro-Doppler signals. This is because humans are

spatially large dynamic targets with considerable variations in their pose

and posture.

In this dissertation, we investigate signal processing, and machine learning

assisted solutions for advancing the current state of the art techniques for mainly

three tasks- target detection, target classification and target imaging with indoor

micro-Doppler radar. The limitations of the existing literature and the presented

solutions are briefly described in the following sections.

1.1 Multiple Target Detection: Using Low Complexity Narrowband Doppler

Radars

Current studies have extensively focused on developing algorithms for the clas-

sification of different types of dynamic targets based on their micro-Dopplers.

For example, studies have demonstrated the usefulness of micro-Doppler signa-

tures for classifying different types of wind turbines [31, 32], ground moving

vehicles [33, 34, 35, 36] and even airborne targets such as drones [37, 38, 39].

More recently, micro-Dopplers have been extensively studied for human hand

gesture recognition [40, 41]. However, all of these works are based on the as-

sumption that the propagation channel consists of only a single dynamic target

or target class. This condition is often violated in real-world scenarios. In-

door environments typically consist of multiple moving targets, such as humans,
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fans, and speakers, while outdoors consists of multiple vehicles and pedes-

trians. When multiple targets are present simultaneously in the channel, the

micro-Dopplers in the radar backscatter interfere, resulting in incorrect classi-

fication. Therefore, before classification is carried out, signals from multiple

movers must be resolved or separated. Multiple target detection can be realized

at the cost of increased hardware complexity by augmenting Doppler sensing

with direction-of-arrival (DOA) processing using multiple receiver channel data

to resolve targets in the Doppler-DOA space [42, 43]. Alternatively, in [11], au-

thors used high range resolution capability of a frequency modulated CW radar

to resolve multiple targets in the joint range-Doppler space.

We have retained the low cost and complexity of CW radar hardware with

a single channel receiver. Instead of hardware augmentation, we have focused

on examining the performance of signal processing based machine learning al-

gorithms for detection of multiple simultaneously moving targets. Algorith-

mically, signal disaggregation is a single channel source separation problem

rather than a classification problem. Single-channel source separation has been

extensively researched in the speech community using data-independent trans-

forms such as Discrete Cosine Transform (DCT), Fourier, and wavelets [44, 45].

There have been several research efforts into representing micro-Dopplers with

traditional data-independent dictionaries such as short-time Fourier transform

and wavelets [10, 12, 15, 17]. However, there is considerable overlap of radar

micro-Dopplers of humans undergoing complex motions in the frequency do-

main due to which these data-independent representations are not suitable for
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source separation. Secondly, when there are multiple targets, the selection

of the appropriate tuning parameters for the data independent transforms be-

comes challenging. In this dissertation, we used a supervised dictionary learn-

ing method where a set of basis vectors or atoms are learned from training data

to represent micro-Doppler from each class of dynamic targets. These dictio-

naries result in sparse representations of the radar signals when compared to

classical data-independent dictionaries. Hence, these data-driven dictionaries

can be used to resolve the superposed radar signals obtained from multiple tar-

gets into individual components. Subsequently, the presence of these targets

is detected based on the strength of their corresponding disaggregated micro-

Dopplers.

1.2 Target Classification: Under Diverse Operating Conditions

Since micro-Dopplers arise from the micro-motions of non-rigid targets, there

has been significant focus on using the latest machine learning algorithms for

classifying different human activities [46, 47, 12, 48, 49, 50, 51, 52, 53, 17, 20,

54, 55, 56, 57, 58, 59, 60, 19, 14, 15, 16, 61, 18, 62, 63, 21, 23, 13]. These in-

clude both periodic motions, such as the human gait [46, 12, 48, 49, 50, 51, 52],

and non-periodic motions such as standing, sitting, arm motions or falling [53,

17, 7]. Most of the existing works utilize the time-frequency representations

of the micro-Doppler returns to classify the data. Here, the short time window

(also known as dwell time) is a critical parameter, which is usually heuristi-

cally selected to represent data from a specific type of dynamic target. Re-
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searches in [60, 12] used heuristic methods while [15] employed principle com-

ponent analysis and independent component analysis [16] to extract features

from time-frequency spectrograms for classification. Empirical mode decompo-

sition achieved classification accuracy up to 90% in [17]. All of these schemes

extracted discriminating features from the micro-Doppler spectrograms.

More recently, there is an active thrust towards using deep learning assisted

solutions to overcome the limitations of existing canonical approaches. Most of

these works use deep convolution neural networks which jointly learn informa-

tive features and classification boundaries without using an additional feature

extraction algorithm [13, 25, 26, 27]. In all of these works, the training and

testing of micro-Doppler signatures for classification have been carried out in

controlled laboratory conditions with fixed radar parameters (carrier frequency,

position, transmitted waveform, etc.) and for fixed motion trajectories of the tar-

gets. However, these conditions may often be necessarily violated in real-world

scenarios. The algorithms have not been tested in real-world conditions where

there may be significant variations from the training conditions. For instance,

through wall radars are mostly operated at 2.4GHz ISM band, which might in-

terfere with other wireless networks such as microwave ovens, baby monitors,

and the ubiquitous WiFi operating in the same band. These sources may di-

rectly interfere at the radar receiver or impinge upon the target and give rise to

additional scatterings from the target.

Therefore, a certain degree of reconfigurability is desired of the radar sys-

tem parameters to allow them to operate under unpredictable conditions arising
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from the presence of interference. The hardware reconfigurability must be sup-

ported by signal processing algorithms that can handle the diversity in the test

and training data. We examined three recent sparse coding-based techniques

for classifying human micro-Doppler data. These are the synthesis dictionary

learning (SDL) [64], the deep dictionary learning (DDL) [65] and the analysis

dictionary learning (ADL) algorithms [66].

1. SDL: In SDL, we learn to express the training signals from each class using

a linear combination of a few dictionary atoms. These dictionaries are fine-

tuned to the underlying signals and are useful signatures for discerning the

right target during classification.

2. DDL: In emerging learning methodologies, the depth of representation is

perceived as a key aspect towards successful classification by capturing

more detailed nuances of each class. Therefore, we extended the shallow

dictionary learning, in SDL, into multiple levels, also known as deep dic-

tionary learning (DDL). Here, the representation from each layer acts as an

input to the subsequent layer. Each succeeding layer, thus, requires fewer

features. The classification is carried out using the representation from the

last layer and thus requires a much lower computation time than SDL.

3. ADL:The ADL is an alternative paradigm to the SDL. Here, a dictionary

directly operates on the data to obtain its sparse representation. The key

difference is that during the test phase, the sparse features required for

classification are directly obtaining without requiring any inverse operation.
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As a result, the ADL involves the least computational cost and time.

1.3 Target Imaging: In Through-Wall Scenarios

Radar images, unlike camera images, consist of multiple scattering centers of a

target convolved with point spread functions whose ambiguity/width is a func-

tion of a radar sensor parameter such as bandwidth (in case of range) or aper-

ture size (in case of azimuth or elevation). Radar images of ground moving

targets, airborne, space borne and water borne targets have been actively re-

searched for decades by the radar community for automatic target recognition

[67, 68, 69]. One of the least explored functionalities of micro-Doppler radar

for indoor tracking is imaging of human activities. The reason is that humans

are large three-dimensional dielectric bodies with tremendous variation in terms

of pose and posture. Also, unlike air crafts and shifts, top view (range-azimuth)

images of humans do not result in particularly informative images since humans

are naturally larger along the length and breadth than width. Instead, frontal im-

ages (azimuth-elevation) resembling human perspectives may be more useful

for indicating the nature of human activity. High-resolution frontal images re-

quire large planar antenna apertures at microwave frequencies. In [70, 71], the

authors explored using micro-Doppler processing to resolve multiple scattering

centers on the human. Then their frontal positions were mapped using two-

dimensional array processing. However, the radar images significantly deterio-

rate due to the presence of undesired clutter signals arising from the multipath

in urban environments [72, 43]. Indoor clutter can be broadly categorized into
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target independent static clutter,target dependent dynamic clutter and target

independent dynamic clutter-

1. Target independent static clutter arise from the reflections off the wall

- especially the front face in a through-wall scenario - ceiling, floor, and

furniture. This type of clutter can cause significant challenges to the detec-

tion of still targets (such as still humans, concealed weapons, estimation

of building layouts) using wideband radar signals. Considerable research

efforts have been devoted to the study of methods to mitigate static clutter

in wideband radars [73, 74, 75]. Static clutter is usually easy to eliminate

when the objective is to detect moving targets. In the case of continuous-

wave radars, these returns fall into the DC bin and can be easily removed

through a baseband notch filter.

2. Target independent dynamic clutter arise from the reflections off other

dynamic movers in the environment. In the case of human tracking, loud-

speakers and fans (in indoor environments) and other ground moving ve-

hicles and animals (in an outdoor environment) give rise to this type of

clutter. We have already discussed the separation of Dopplers from multi-

ple movers in the previous section.

3. Target dependent dynamic clutter arise from the interactions between

the complex propagation environment and the moving target. This clutter is

far more difficult to remove since the clutter is not independent of the target.

In Doppler based tracking of moving humans, the performance of the radar
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detection is limited by the presence of dynamic clutter. Currently, there has

been limited research efforts made to eliminate dynamic signal dependent

clutter due to the challenges in resolving the target returns from clutter

especially when the knowledge of the exact propagation characteristics or

analytical framework is unavailable.

This dissertation focuses on mitigating wall effects in through-wall frontal

images of humans using a machine learning-based solution- denoising autoen-

coders. The algorithm does not require prior information about the wall param-

eters or room geometry. Instead, the method relies on the availability of a large

volume of training radar images gathered in through-wall conditions and the

corresponding clean images captured in line-of-sight conditions. The algorithm

learns how to denoise or clean the corrupted signals using training data com-

prising of both corrupted and clean data. We demonstrate that the autoencoder

can be used for removing signal-dependent clutter when no information or la-

bel of the through-wall scenario is assumed to be known during the test phase.

Instead, the autoencoder is trained with a mixture of images gathered in diverse

through-wall conditions.

1.4 Research Objectives

The research objectives of this dissertation are listed below.

1. To generate and publically release a curated data set of both simulated

and measured micro-Dopplers of multiple humans of different periodic mo-
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tions, in line-of-sight and through-wall scenarios. Currently, such data are

not easily available in the radar community, and hence this forms an impor-

tant contribution of this dissertation.

2. This dissertation investigated signal processing solutions to enable the tran-

sition of micro-Doppler radar from the laboratory to real-life deployment

by addressing the limitations of existing approaches. It examined signal

processing algorithms for:

(a) Single channel source separation of micro-Dopplers to enable detec-

tion of multiple targets using low complexity CW radars.

(b) To classify micro-Doppler signatures when test and training conditions

differ.

(c) To mitigate target-dependent dynamic clutter arising from interactions

between the moving human and the propagation channel using a ma-

chine learning-based denoising autoencoders- that does not require

prior information of the wall parameters or room geometry.

1.5 List of Publications

The papers that contributed to this dissertation are the following.

1.5.1 Papers in refereed journals

1. S. Vishwakarma and S. S. Ram, “Mitigation of through-wall distortions of

frontal radar images using denoising autoencoders,” under revision IEEE
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TGRS, 2019. The online version is available on arXiv preprint arXiv:1903.09451.

2. S. Vishwakarma, G. Duggal, K. V. Mishra, and S. S. Ram, “Doppler-

resilient 802.11 ad-based ultra-short range automotive radar,” under revi-

sion IEEE TAES, 2019. The online version is available on arXiv preprint

arXiv:1902.01306.

3. S. Vishwakarma and S. S. Ram, “Dictionary learning with low computa-

tional complexity for classification of human micro-Dopplers across multi-

ple carrier frequencies,” IEEE Access, 6, 29793–29805.

4. S. Vishwakarma and S. S. Ram, “Detection of multiple movers based on

single channel source separation of their micro-Dopplers,” IEEE Transac-

tions on Aerospace and Electronic Systems, 54(1), 159–169.

1.5.2 Papers in conferences

1. S. Vishwakarma, N. Pandey, and S. S. Ram,“Clutter mitigation in range

enhanced radar images using sparsity based denoising autoencoders,” ac-

cepted in International Radar Conference, IEEE, 2019.

2. S. Vishwakarma and S. S. Ram, “Mitigation of through-wall interference

in radar images using denoising autoencoders,”Radar Conference (Radar-

Conf ), IEEE, 2018, pp. 1543–1548.

3. A. D. Singh, S. S. Ram, and S. Vishwakarma, “Simulation of the radar

cross-section of dynamic human motions using virtual reality data and ray

tracing,” RadarConference (RadarConf ),IEEE, 2018, pp. 1555–1560.
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4. S. Vishwakarma and S. S. Ram, “Dictionary learning for classification of

indoor micro-doppler signatures across multiple carriers,” in Radar Con-

ference (RadarConf), IEEE, 2017, pp. 0992–0997.

5. A. D. Singh, S. Vishwakarma, and S. S. Ram, “Co-channel interference

between wifi and through-wall micro-Doppler radar,” in Radar Conference

(RadarConf), IEEE,2017, pp. 1297–1302.

6. S. Vishwakarma and S. S. Ram, “Classification of multiple targets based

on disaggregation of micro-doppler signa-tures,” in Microwave Conference

(APMC), 2016 Asia-Pacific IEEE, 2016, pp. 1–4.

1.6 Thesis Organisation

This dissertation is organized as follows.

Notation: We use the following notation in this chapter. Matrices are written

in capital bold letters while vectors and variables are written in normal letters.

• Chapter 2 introduces the basic concept of micro-Doppler phenomenon fol-

lowed by a discussion of experimental data collection of radar micro-Doppler

from humans. We present both the simulation and measurement method-

ologies to generate radar scatterings off the human subject in free space

line-of-sight (LOS) conditions and through-wall conditions.

• In Chapter 3, a method based on the dictionary learning algorithm has been

presented to facilitate the resolving of multiple moving targets in the same

15



propagation channel based on single-channel source separation without

hardware augmentation of radar. The approach also facilitates the detec-

tion of targets across a wide dynamic range. In other words, it is able to

detect weak micro-Dopplers in the presence of returns from a mover of

strong radar cross-section.

• In Chapter 4, customized dictionaries are used to represent radar micro-

Dopplers under diverse radar operating conditions (different carrier fre-

quencies during training and test). The performance of data-driven dictio-

naries was benchmarked with data-independent dictionaries such as prin-

cipal component, heuristic features, DCT coefficients, and cepstral coef-

ficients. The data-driven dictionaries outperformed the data independent

dictionaries in terms of their classification accuracy and computational

time.

• In Chapter 5, a denoising autoencoder framework has been demonstrated

to mitigate clutter and distortion in through-wall frontal images of both

static and dynamic humans. The radar images of dynamic humans are sim-

ulated using Doppler-enhanced array processing while the images of the

static humans are generated from measurement data using range-enhanced

array processing. The autoencoder is implemented using an alternating

direction method of multipliers approach to ensure convergence and fast

training times. The presented approach required neither prior information

of the wall characteristics nor any analytic framework to describe the wall

propagation effects.
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• Finally, Chapter 6 conclude this dissertation along with the suggested fu-

ture research directions.
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Chapter 2

Introduction to Micro-Doppler Effect

This chapter introduces the basic concept of Doppler effect followed by the

micro-Doppler phenomenon. In the subsequent sections of the chapter, we out-

line the methods that we have used in this dissertation for experimental data col-

lection of radar micro-Doppler from humans. We discuss both the simulation

and measurement methodologies to generate radar scatterings off the human

subject in free space line-of-sight (LOS) and through-wall scenarios.

2.1 Doppler effect

Doppler radar is an electromagnetic system that transmits a CW signal and de-

tects the shift in the carrier frequency of the reflected signal proportional to

the relative velocity between the radar and the target. The Doppler effect is

extensively used to distinguish dynamic targets from static clutter. Consider a
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time-domain radar signal si(t),

si(t) = ae−j2πfct, (2.1)

where fc is the transmitter frequency and a, the strength of the signal subsumes

the transmitted power and the gain of the antenna. The time domain radar re-

turns from a dynamic target, sr(t), are given by

sr(t) = b(t)exp

(
−j2πfc

(
t− 2

r(t)

c

))
. (2.2)

Here, r(t) and b(t) are the time-varying down-range and received signal strength

from the target respectively and c is the speed of light. The radar cross-section

of the target, the path loss and the gains of the radar antennas and transmitted

power are subsumed in b(t). If the target is moving with a radial velocity v, then

sr(t) = b(t)exp

(
−j2πfc

(
t− 2

r0 + vt

c

))
. (2.3)

Then the baseband received signal sees a Doppler shifted frequency signal given

by

fD = − 2

λc

dr(t)

dt
= −2v

λc
, (2.4)

where λc = c
fc

is the wavelength of the transmitted radar signal. Now, if the tar-

get approaches the radar, the receiver will perceive a higher frequency resulting

in positive Doppler shift. Conversely, if the target moves away from the radar,

the Dopplers are negative.
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Figure 2.1: Simulation setup configured to capture back-scattered signal from a simple rotating target

2.2 Micro-Doppler Effect

Targets that undergo micro-motions such as rotation and vibration along with

the bulk body translational motion, give rise to additional frequency modula-

tions along the main Doppler called micro-Dopplers [2, 3]. We provide an

example of the micro-Dopplers generated by a rotating target. Fig.2.1 shows

a simple rotating target. Consider a point scatterer P lying at distance D0 from

a center point O and initial rotation angle of θ0 from the positive X-axis at t = 0

seconds. The distance between radar and O is r0. The scatterer P rotates about

O in the X − Y plane with a rotation rate Ω. The elevation angle is 0◦ since

both radar and rotating point scatterer P are assumed to lie on the same X − Y

plane. At t seconds, P rotates, resulting in radial range given by

r(t) = r0 + vt+D0sinθ0cosΩt+D0cosθ0sinΩt. (2.5)
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Here, v is the radial velocity of scatterer P . The linear Doppler frequency shift

of the scatterer P can be derived as

fD = − 2

λc

dr(t)

dt
= − 2

λc
[v +D0(−sinθ0sinΩt+ cosθ0cosΩt)]. (2.6)

If the target possess only the rotational motion, the micro-Doppler frequency

variations due to rotation can be captured by

fmD = − 2

λc
D0(−sinθ0sinΩt+ cosθ0cosΩt). (2.7)

Extensive studies have demonstrated that these micro-Doppler features can

be exploited using various high-resolution time-frequency (TF) transforms to

characterize the time-varying frequency content of a signal. Most of the existing

works utilize the STFT based spectrograms of the micro-Doppler returns to

represent the data [2].

STFT(t, f) =

∫
x(τ)h(t− τ)e−j2πfτdτ (2.8)

Spectrogram(t, f) = |STFT(t, f)|2 (2.9)

Here h(t) is the short time window (also known as dwell time) that captures

frequency content of the signal at different time instances. The duration of the

window is often heuristically selected based on the nature of the target’s mo-

tion. A shorter time window results in better time resolution but leads to poor

frequency resolution and vice versa. Many alternative time-frequency repre-
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sentations have been studied to overcome the resolution limit of the STFT. We

have, however, used spectrograms to represent our micro-Doppler data in the

dissertation.

2.3 Experimental Data Collection

Micro-Dopplers have been observed for different types of ground moving vehi-

cles, humans and animals, wind turbines, helicopters, and other airborne targets

as well as ships and underwater vehicles. In this thesis, we focus our discus-

sion on human sensing with micro-Doppler radar. We investigate indoor micro-

Doppler radar for three main applications- target classification, detection, and

imaging of different human activities. The supporting signal processing algo-

rithms are based on recently introduced machine learning assisted solutions.

However, the performance of machine learning algorithms relies on the avail-

ability of large training databases gathered in a variety of scenarios. Therefore,

we are motivated to gather large training databases of human micro-Dopplers in

both free-space line-of-sight and indoor through-wall scenarios.

Experimental data can be gathered either by simulating the radar scatterings

off human motions or through measurement data collection in laboratory con-

ditions. Simulation data form a means for preliminary evaluation, for pinpoint-

ing cause and effect of radar phenomenology and for quickly generating large

volumes of training data. Currently, we have excellent means for simulating

human walking motions as a function of the height and velocity of the target,
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which forms the most important parameters that characterize the micro-Doppler

spectrograms. Measurement data, on the other hand, are used for more detailed

studies of the effect of hardware limitations and a more thorough evaluation of

the performance of the algorithms in real-world scenarios. Both the simulation

and measurement methodologies are detailed in the following two subsections.

2.3.1 Simulation Data

2.3.1.1 Radar Simulation of Humans in LOS

The earliest method of modeling human motion is shown in Fig.2.2(a). Here,

the legs of the humans (which give rise to the maximum Dopplers) are modeled

as a double pendulum structure [76]. However, we have not used this model

in this thesis since it does not capture the variations due to the motion of other

body parts such as hands and torso.

Boulic-Thalmann model: The second method shown in Fig.2.2(b), is based on

the Boulic-Thalmann model that was derived from extensive biomechanical ex-

periments [77]. The model provides a set of 12 equations that govern the mo-

tion trajectories of 17 different body parts as a function of three parameters -

the height, the relative velocity of the subject and the starting phase of the leg

motion. The advantage of this model is that we can generate a large variety

of human walking motions by varying each of the parameters within specified

bounds. However, the model has some limitations - First, it is a constant velocity

model. Therefore, it does not describe the start of the motion; the acceleration

turns or slowing down to halt. Second, it is an averaged model and hence does
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Figure 2.2: Simulation Models for Human Motion (a) Simple pendulum model, (b) Analytical models of walking
motion derived from bio-mechanical experiments and (c) Computer animation models using Motion Capture
(MOCAP) system for complex human motion

not show distinctions in human gait due to the subject’s gender, age, mood, or

fitness. Also, the model cannot be extended to more complex motions such as

jumping, skipping, and crawling.

Computer animation model: The third technique shown in Fig.2.2(c), use com-

puter animation/motion capture data to model different human motions such as

crawling, running and skipping [78, 79]. Several markers are placed on differ-

ent parts of the live actor’s body to capture their three-dimensional positions at

each time instant. Freely available databases of motion capture data from CMU,

University of Pennsylvania and Ohio State are available.

In this thesis, we have used the analytical as well as computer animation

motion models of the human. These animation models are then combined with

primitive based electromagnetic modeling to generate the radar scatterings off

the humans. The primitive based model is computationally fast and simple to

execute, especially compared to full-wave electromagnetic solvers. Here, we

model different parts of the human body such as - torso, arms, and legs - as

ellipsoids while the head as a sphere. The RCS of each bth primitive (σb) is well

24



characterized at microwave frequencies. If the scattering center of the primitive

is assumed to be approximately at the center of the primitive ~rb(t) at any time t,

then the time domain radar returns of the human, x(t), can be estimated by the

complex sum of the returns of each of the body parts as shown in

x(t) =
B∑
b=1

√
σb(t)

r2
b(t)

e−j
2πfc
c 2rb(t). (2.10)

2.3.1.2 Radar Simulation of Humans in Through-Wall Scenarios

All the existing simulation techniques simulate radar returns from humans mov-

ing in free space conditions. There is very little literature on simulating human

radar returns in non-line-of-sight conditions due to the considerable variations

that may exist in the propagation environment. For instance, if the radar is de-

ployed in indoor settings, walls being dispersive and in-homogeneous mediums

may introduce considerable distortions such as attenuation, delay and multipath

to the radar returns. Additionally, multipath may arise from the ceiling, floor,

and furniture. In [43, 80, 72], a deterministic model of through-wall propagation

- derived from finite difference time domain (FDTD) simulations - was com-

bined with human scattering models. However, these results provide the returns

for a single environmental scenario. In real-world conditions, there are consider-

able variations in the electrical parameters (dielectric constant and conductivity)

of the environment. Modeling each of these variants through an independent

electromagnetic simulation would require tremendous computational resources.

Instead, we present an approach to extend a single simulation framework to
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provide results for variations in the environment by incorporating stochasticity

in the electrical parameters used in the FDTD equations through a stochastic

FDTD (sFDTD) framework as described in [81].

The traditional FDTD models Maxwell’s equations in the discrete-time do-

main over a discretized space. Electrical parameters such as the dielectric con-

stant, conductivity, and magnetic permeability are specified for each spatial grid

position. Electric and magnetic field equations are updated in each discrete time

step in a leapfrog manner. In sFDTD, a normal distribution of the electrical pa-

rameters is considered for each spatial position. This results in a Gaussian dis-

tribution for the electric and magnetic field values across time and space. The

sFDTD provides the mean and variance of the fields for every time step and

for every grid point. While the process of updating of the mean electric field

and magnetic field values is identical to that of the traditional FDTD, additional

equations are incorporated to update the variance of the fields at each time step.

In this thesis, the stochastic framework enables us to model the diversity in

the indoor propagation effects due to the variations in the electrical characteris-

tics. We demonstrate with an example for through-wall propagation. Consider a

two-dimensional simulation space shown in Fig.5.4, extending along the X and

Z directions respectively (assuming the problem is invariant along Y height

axis). The space is bounded by a perfectly matched layer and divided into spa-

tial grids of size of 1/10th the wavelength λc of the excitation source located

at ~ρs. A suitable time step is chosen to satisfy the Courant-Friedrichs-Levy sta-

bility condition [82]. A dielectric wall of a certain thickness spans the space.
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Figure 2.3: Room geometry of the simulation setup for stochastic FDTD.

Stochastic variations are introduced in the relative permittivity εr and conduc-

tivity σc of each grid point in the wall. Therefore, even a single layer dielectric

wall is not truly homogeneous. Thus the model resembles real world conditions.

For every point in space, ~ρp, and at every time instant t, the sFDTD simulation

gives the mean time-domain electric field µE(~ρp, ~ρs, t) and its standard deviation

σE(~ρp, ~ρs, t). We can use the Gaussian stochastic model to generate multiple

samples (η) of time-domain electric field values E(~ρp, ~ρs, t, η) ∼ N (µE, σ
2
E).

The E(~ρp, ~ρs, t, η) is fast Fourier transformed to obtain the corresponding η

samples of frequency domain wall transfer function between source and field,

Hwall(~ρp, ~ρs, η).

The time-domain scattered returns from dynamic humans in a non-LOS through-

wall scenarios can be obtained by modifying (2.10) to

x(t, η) =
B∑
b=1

√
σb(t)

r2
b(t)

× (Scale2D→3DHwall(~rb(t), ~ρs, η))2 . (2.11)

Note that Hwall(~ρp, ~ρs, η), is the propagation factor from a two-dimensional

source position ~ρs to field position ~ρb (projection of ~rb in the two-dimensional
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space). Therefore, a suitable scaling operation is required to convert the two-

dimensional propagation factor to three-dimensional transfer function as dis-

cussed in [80].

2.3.2 Measurement Data

Radar micro-Doppler data have been gathered with commercial sensors or us-

ing a variety of hardware platforms built using either- commercial off the shelf

components (COTS), or software defined radios. The main aim is to enable en-

hanced developments in the framework of smart homes, healthcare and biomed-

ical scenarios. [83], reported a radar-based technique for fall detection with

application to elderly care. While researchers in [84], developed a portable

frequency-modulated continuous-wave radar for indoor human tracking. In

[85], an embedded multi sensor system was developed for safe point-to-point

navigation of impaired users. Other low cost, low power, radars that have

been used for measurement data collection are [86, 3, 23] and [49, 52, 51,

87] at Villanova University [URL: https://goo.gl/m5ENZx]. More re-

cently, authors in [88], developed a software-defined Doppler radar for moni-

toring human breathing. Most of these radars have been deployed in a mono-

static configuration. However, micro-Dopplers are dependent on aspect angle

of the target. Therefore, additional Doppler diversity has been investigated us-

ing bistatic or multistatic configurations [89]. Some of the commercially avail-

able radars that offer low-power, SDR development kits with tunable radar pa-

rameters are- Ancortek Radars https://ancortek.com/, XeThru radar
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available at https://www.xethru.com/, Walabot Pro, a wideband(3.3-

10.3GHz) 3D-programmable RF imaging sensor available at [90]. These SDR

kits offer great flexibility for applications in industrial automation, healthcare

monitoring, public safety, security and academic research. In this thesis, we

Figure 2.4: Measurement setup of monostatic radar configured using Field-Fox Vector Network Analyzer and two
horn antennas in line-of-sight scenario

have used the experimental set up shown in Fig.3.2, to generate measurement

micro-Doppler data. The system comprise of two linearly polarized double-

ridged waveguide horn antennas (HF907) rated up to 18 GHz, separated by

a distance of 50cm, and a N9926A FieldFox vector network analyzer (VNA)

rated up to 14GHz. The VNA can be configured either in narrowband mode

or broadband mode. Time-domain S21 measurements of the VNA capture the

back-scattered radar returns from a test subject. The VNA can transmit up to a

signal strength of +3dBm and has an excellent dynamic range of 100dB with
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a noise floor at −120dBm. The system is portable. However, it has some lim-

itations. The system allows for only one transmitter and one receiver. When

the VNA is configured to the narrowband mode, it has a limited sampling fre-

quency which is a function of sweep time. Hence, this system can only be used

for detecting and tracking slow-moving targets at low carrier frequencies.
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Chapter 3

Detection of Multiple Movers Based on

Single Channel Source Separation

Indoor environments typically consist of multiple moving targets, such as hu-

mans, fans, loudspeakers, etc. Radars detect multiple targets by resolving them

either along the down range (using wide bandwidths), Doppler or direction-of-

arrival (using large antenna apertures). In the case of low complexity narrow-

band Doppler radars (with single transmitter and receiver), multiple target de-

tection is challenging. This is because when multiple targets are present simul-

taneously in the channel, their radar backscatter superimpose. As a result, the

signatures are dominated by features arising from the strongest targets (based

on their radar cross-section and proximity to the radar) with distortions arising

from the weaker target returns. The distorted micro-Doppler signatures are then

incorrectly classified. This is a serious limitation in most real-world scenarios

since they often consist of multiple movers. Therefore all of the current research

in micro-Doppler radars have assumed that the propagation channel consists of
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only a single target.

In this chapter, a signal processing solution has been presented to detect mul-

tiple simultaneously moving targets by separating the aggregate backscatter sig-

nal into individual components from each target, thus retaining the low cost and

complexity of CW radar hardware. Algorithmically, signal disaggregation is a

single channel source separation problem rather than a classification problem.

The algorithm used in this chapter is based on sparse coding methods that were

recently developed to separate the energy signals from multiple residential elec-

trical appliances into their component signals [91]. Here, training data are used

to learn a unique model or dictionary for the micro-Doppler data from each tar-

get class. Since dictionary learning is driven by the radar data, its atoms can

be better tuned to match the underlying signal than traditional data-independent

dictionaries such as Fourier or wavelets. Further, the dictionary parameters such

as the short time window duration, in the case of Fourier, must be set based on

the type of target. Hence, when there are multiple targets, the selection of the

appropriate parameters for the successful representation of the signal becomes

challenging. Dictionary learning presents an alternate method where a set of ba-

sis vectors or atoms (dictionaries, D) are used to represent signals, X, as shown

in

X = DZ. (3.1)

Here, each column of X indicates a time-domain measurement of the radar sig-

nal. These atoms can be tuned to the underlying signal and hence may yield

slightly sparser representations of the signals, Z, than the data independent
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dictionaries. In essence, dictionary learning from training data, X, involves

minimizing the objective function, J(D,Z) as shown in

J(D,Z) = min
D,Z
‖X− DZ‖2

F + λ ‖Z‖0 . (3.2)

Here, ‖.‖0 is the l0 norm that provides a count of the number of non-zero ele-

ments in coefficient matrix Z. The optimization is done through a two staged

procedure where atoms of dictionary and coefficients are updated through two

alternating minimization operations as described below.

3.1 Two Stage Implementation of Dictionary Learning

N number of M dimensional training signals denoted by X = [x1 . . . xN ], are

considered where xn ∈ RM×1. Dictionaries are learnt from X in a two staged it-

erative procedure. First, the dictionaries are initialized using randomly selected

training signals such that D ∈ RM×P , is over complete (where the number of

atoms P is greater than the signal dimension M ).

1. Sparse coding stage: In order to ensure sparse representation of X, the

following constraint is imposed on Z as shown in

Z = min
Z
‖X− DZ‖2

F s.t ‖Z‖0 < τ. (3.3)

The sparsity level is controlled by parameter τ . Unfortunately l0-minimization

is NP-hard [92]. Compressed sensing has demonstrated that the l0-norm
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can be replaced with l1-norm, as shown in,

Z = min
Z
‖X− DZ‖2

F + λ ‖Z‖1 , (3.4)

and still ensure sparsity. Here λ ∈ R is a regularization parameter that

controls the trade-off between the level of sparsity in Z and the error in

data fitting. The formulation in (3.4) is a convex problem which is solved

using the iterative soft thresholding algorithm (ISTA) algorithm suggested

by [93].

2. Dictionary update stage: Once the sparse coefficients are obtained, the

dictionary is updated using a least squares approach [94], as shown in

D = min
D
‖X− DZ‖2

F s.t. ‖dp‖2
2 ≤ 1, ∀ p = 1, 2, . . . P. (3.5)

Columns of dictionary are normalized to have norm less than unity. This

two-staged process is iterated until J(D,Z) converges or reaches a very

low tolerance level.

If there are I target classes, the corresponding dictionaries, Di are learnt for each

ith class using this procedure. Once learned, the dictionaries can be used either

directly for classification as described in Section 3.1.1 or can be used to dis-

aggregate or separate the superposed radar backscattered signals from multiple

moving targets as described in Section 3.1.2. The limitation of the classification

algorithm is that the aggregate signal is classified or assigned to just a single

class. In contrast, the disaggregation algorithm enables the aggregate signal to
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be assigned across multiple classes.

3.1.1 Sparse Coding Based Disaggregation

If there are multiple movers in the propagation channel, the received signal at

the radar receiver is the aggregate, Xagg, from all of these targets as shown in

Fig.3.1 and equation (3.6).

Xagg = ΣI
i=1Xi (3.6)

Here, Xi are the radar signals from ith target class. The aim is to disaggregate

Xagg, into the constituent components X′1 . . .X
′
I belonging to I different classes.

First, the dictionaries from all the classes are combined together to form a set:

D(1:I) = [D1 . . .DI ]. It is then solved for the sparsest solution, Ẑ1:I for each

class i as shown in

Ẑ1:I = min
Ẑ1:I

∥∥∥Xagg − D1:IẐ1:I

∥∥∥2

F
+ λ1

∥∥∥Ẑ1:I

∥∥∥
1
. (3.7)

Figure 3.1: Single channel source separation of radar signals from multiple targets
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The intuition behind this technique is as follows - If Di is trained to recon-

struct Xi, then it will be able to reconstruct X′i = DiẐi, which is the ith portion

of the aggregate signal better than any other Dj for j 6= i. The assumption here

is that the dictionaries learnt for specific classes are discriminative and there

is less coherence between inter-class dictionaries. An optional additional con-

straint can be imposed on the dictionary learning algorithm to ensure that the

discrimination across dictionaries is maximized [95, 96]. In our case, this was

found to not be necessary. Most of the active elements of Ẑ1:I should be located

in Ẑi where i is the class to which the signal belongs. Therefore, once the signal

has been disaggregated, the target i is detected if the strength,
∥∥∥Ẑi

∥∥∥
2
, is above a

predefined threshold (γT ). In other words, ideally, each target signal is expected

to lie in its own class subspace and all the class sub-spaces are non-overlapping.

The detailed algorithm is illustrated in Table 3.1.

3.1.2 Sparse Representation based Classification

To classify the aggregate signal into one of the I classes, the learned dictionaries

Di can directly be used in the sparse representation-based classifier (SRC) [97].

The test signal will be assigned to the class, î, having the least error amongst all

class representations as shown in

î = min
i

∥∥∥Xagg − DiẐi

∥∥∥2

2
∀ i = 1, 2, . . . I. (3.8)

The classification algorithm is therefore not suited for detecting multiple targets

that are simultaneously present in the channel. Note that in prior works the
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Table 3.1: Disaggregation algorithm for detection of multiple target classes

Input: Training data matrix XTr
i ∈ RM×N , from I individual classes for i = 1, 2, . . . I , λ ∈ R is

a regularization parameter.

Stage 1: Learning class specific dictionaries for i = 1, 2 . . . I

Loop until convergence

{Zi} = min
Zi

∥∥XTr
i − DiZi

∥∥2
F

+ λ ‖Zi‖1

{Di} = min
Di

∥∥XTr
i − DiZi

∥∥2
F

s.t ‖dpi‖22 ≤ 1

End

Stage 2: Disaggregation of Xagg using learnt dictionaries from I different classes concatenated
together, D1:I = [D1 . . .DI ] , λ1 ∈ R is a regularization parameter.

(a) Sparse Coding

Ẑ1:I = min
Ẑ1:I

∥∥∥Xagg − D1:I Ẑ1:I

∥∥∥2
F

+ λ1

∥∥∥Ẑ1:I

∥∥∥
1

(b) Detection based on strength of sparse coefficients Ẑi, γT is the defined threshold

Ẑi =


Ẑi if

∥∥∥Ẑi

∥∥∥
2
≥ γT

0 if
∥∥∥Ẑi

∥∥∥
2
< γT


(c) Reconstruction of disaggregated signal

X′i = DiẐi

test signal was assumed to consist of radar backscatter from only a single tar-

get. Any backscatter from other moving objects in the background was simply

treated as noise. In contrast, here, the test signal is considered to be the aggre-

gate backscatter from multiple targets (Xagg), and the objective is to detect all

the movers.
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Figure 3.2: Experimental setup using FieldFox Vector Network Analyzer and two horn antennas as monostatic
radar at 7.5 GHz for detecting one or more targets (human walking towards radar, human walking away from radar,
human walking in the tangential direction, and table fan).

3.2 Experimental Data Collection

A monostatic CW radar shown in Fig.3.2 is used to collect measurement data

from four target classes:

1. Human walking towards the radar (FH),

2. Human walking away from the radar (BH),

3. Human walking in tangential direction before the radar (SH)

4. Table fan (TF).

A CW radar configuration operating at 7.5 GHz gather measurement data from

40 human subjects (with varying gaits, heights and velocities) and a table fan

(with different angular velocities, distances and orientations with respect to the

radar). The human subjects moved roughly between 1m and 9m in front of the
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radar. The duration of each measurement is 2.7s with 1000 samples. These

data are gathered in single, two, three and four targets scenarios. The complete

data set and its detailed description is available on url: https://bit.ly/

2zkWGrc. The complete data set and its detailed description is presented in

Table 3.2.

We show the joint time-frequency spectrograms generated from the base-

band digitized time-domain radar data by the application of short-time Fourier

transform in

STFT(t, f) =

∫
x(τ)h(t− τ)e−j2πfτdτ (3.9)

Spectrogram(t, f) = |STFT(t, f)|2 (3.10)

Here h(t) is the short time window of duration 0.054 s.

Figure3.3 shows the Doppler spectrograms generated from measured data

gathered from a single target scenario using short time-frequency transform.

When the human is walking away from the radar (BH), the Dopplers, as shown

in Fig.3.3a, are mostly negative except for the backswing from the arms and

legs. The strength of the Dopplers decreases with time as the distance from

the radar increases. On the other hand, the Dopplers are mostly positive, in

3.3b, when the human is walking towards the radar (FH). The Doppler spread

is directly a function of the velocity and height of the human since the feet give

rise to the maximum absolute values of Dopplers. When the human is walking

tangentially before the radar (SH), the Dopplers are less pronounced as shown
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Table 3.2: Data Set Description

Target Scenario and
Description

Target Parameters Training Data Test Data

Single target-
FH, BH, SH

Number of subjects: 40
Target Heights: 5’ to 6’
Target Velocities:0.6m/s to 1.5m/s
Number of measurements:200
(5 measurements from each
of the 40 subjects)

150
(5 measurements
from each of the
30 subjects)

50
(5 measurements
from each of the
10 subjects)

Single target-
TF

Number of fans: 1
Angular velocities: 1400 rpm,
2000 rpm and 2600 rpm
Locations from the radar : 8
Number of measurements:240
(10 measurements from each
of the 24 cases)

150
(10 measurements
from each of the
15 cases)

50
(10 measurements
from each of the
5 cases)

Two targets-
FH+TF,
BH+TF,
SH+TF

Number of humans: 5
Number of fans: 1
Locations of fan: 2
Number of measurements: 50
(5 measurements from each
of the 5 x 2 cases)

0
(No training data)

50
(All measurement
data are used for
testing)

Two targets-
FH+BH

Number of humans walking
towards radar: 2
Number of humans walking
away from radar: 2
Number of measurements: 40
(10 measurements from each
of the 4 cases)

0
(No training data)

40
(All measurement
data are used for
testing)

Three targets-
FH+BH+TF,
FH+SH+TF,
BH+SH+TF

Number of humans: 2
Number of fans: 1
Number of measurements: 20
(10 measurements from each
of the 2 cases)

0
(No training data)

20
(All measurement
data are used for
testing)

Four targets-
FH+BH+SH+TF

Number of humans: 3
Number of fans: 1
Number of measurements: 20
(10 measurements from each
of the 2 cases)

0
(No training data)

20
(All measurement
data are used for
testing)

in Fig.3.3c though their strengths are similar to the FH and BH cases. This

is due to the low Doppler shift that arises from the target’s cross line of sight

motion with respect to the radar. The periodicity in the Dopplers corresponds

to the gait of the human. Figure3.3d shows the spectrogram due to the three
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(a) (b)

(c) (d)

Figure 3.3: Doppler spectrogram of (a) human walking away from the radar, (b) human walking towards radar, (c)
human walking tangentially before the radar and (d) rotating table fan generated with monostatic radar at 7.5GHz

rotating blades of the table fan (TF). The Dopplers here are a function of the

blade length, the angular velocity, and the orientation of the fan. Due to low

sampling frequency limits imposed by the VNA, aliasing can be observed in the

spectrogram.

3.2.1 Training data

75% of the measurement data gathered in the single target scenario for the four

target classes (XTR
FH , XTR

BH , XTR
SH and XTR

TF ) are used for training purposes. As a

result, the training signal matrix is of size [1000×150]. During stage 1 of Table

3.1, class-specific dictionaries (DFH , DBH , DSH and DTF ) are learnt from the

training data corresponding to the four targets. Dictionaries of size [1000×500]
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for all the target types, for four different values of λ = 0.0001, 0.001, 0.01, 0.1

are examined. Finally, the dictionaries with the least error of signal representa-

tion are adopted.

3.2.2 Test data

Our training and test scenarios are not identical. They differ in the following

key ways: first, the test data are gathered from a different set of subjects than

the training data; second, the data, Xagg, are gathered in two, three and four

target scenarios (as opposed to the single target scenario for training data). In

both the training and test cases, the humans and fans are placed in different loca-

tions and orientations with respect to the radar. Then Xagg and the concatenated

dictionaries are used as input to the sparse coding based disaggregation algo-

rithm described in stage.2 of Table 3.1 to obtain constituent signal components

from different movers. A target i is detected if the strength of disaggregated co-

efficient, ||Ẑi||2, is greater than a pre-defined threshold value for human targets

and for table fan which is determined empirically from the noise floor of the

measurements and the average radar cross-section of the targets. In the absence

of prior works on disaggregation of micro-Doppler data, the performance of the

algorithm is compared with the classification algorithm described in (3.8). Each

test case is assigned to the class i that gives rise to the minimum residue between

the test data Xagg, and Di,Zi. Thus the classification algorithm can be used to

identify the presence of only a single target in the channel. Strictly speaking,

the disaggregation and classification algorithms have different objectives, and
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only the former is suited for the simultaneous detection of multiple targets.

3.3 Experimental Results

In this section, the performance of the disaggregation and classification algo-

rithms are examined.

3.3.1 Doppler Spectrograms of Disaggregated Signals

The dictionary learning based algorithm is a supervised learning technique where

the target classes must be known prior to detection. Multi-target class scenar-

ios are considered where the objective is to detect the presence of one or more

of the targets on the basis of disaggregation of backscatter signals. First, the

Doppler spectrograms generated from the disaggregated components are com-

pared qualitatively with the previously shown spectrograms in Fig.3.3.

In the first case, a two target scenario is considered where a human walk-

ing towards the radar (FH) and a table fan (TF) are present in the channel. The

radar cross-section of the human is greater than that of the fan. The spectrogram

in Fig.3.4a shows radar backscatter from both the targets with corresponding

micro-Doppler features. The micro-Dopplers overlap at certain frequencies. If

these aggregated data are directly used for classification, it is quite likely that

the target will be assigned to class FH due to the strength of its returns. Figure

3.4.b d show the spectrograms generated from the disaggregated components

and the advantages of the disaggregation algorithm. We can clearly observe
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Figure 3.4: Doppler spectrogram of (a) aggregate micro-Doppler from a human walking towards the radar and a
rotating table fan, (b) disaggregated micro-Doppler of human walking towards radar (indicating presence of target)
(c) disaggregated micro-Doppler of human walking away from radar (indicating absence of target) (d) disaggregated
return of rotating table fan (indicating presence of target).

targets belonging to the classes FH (Fig.3.4b) and TF (Fig.3.4d) while there is

no target belonging to the class BH (Fig. 4c) or SH (not shown). Note that the

strength of the disaggregated components (Fig.3.4a and Fig.3.4c) slightly differ

from what is observed in the aggregate signal (Fig.3.4a). This may be attributed

to the interference between the signals belonging to the different classes in the

aggregate signal. Another two target scenario is when two humans are walking

one towards and the other away from the radar (FH and BH). This is a more

challenging scenario since the radar cross-sections of the two humans are com-

parable. The spectrogram shown in Fig.3.5a, clearly indicates both positive and

negative micro-Dopplers emanating from the two targets. There is still some

overlap between the micro-Dopplers from the back swing of the arms and legs.
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Figure 3.5: Doppler spectrogram of (a) aggregate micro-Doppler from two humans, one walking towards the radar
and one walking away from radar, (b) disaggregated micro-Doppler of human walking towards radar (indicating
presence of target) (c) disaggregated micro-Doppler of human walking away from radar (indicating presence of
target) (d) disaggregated return of rotating table fan (indicating absence of target).

Due to the similarity in the strength of the returns from both the targets, the

classification algorithm, based on these aggregate data, is quite likely to be con-

fused between classes FH and BH. The spectrograms from the disaggregated

components, on the other hand, clearly indicate the presence of FH (Fig.3.5b),

BH (Fig. 3.5c) and the absence of TF (Fig.3.5d). The disaggregation algorithm,

however, does seem to not correctly pick out the highest Dopplers arising from

the motion of the feet. This may be due to the variation in the training data

corresponding to humans of different heights. Finally, a three target scenario

is considered where radar returns from three moving targets (FH, BH, and TF)

are present. The spectrogram of aggregate signals, shown in Fig.3.6a, indicates

that the aggregate data may be confused mostly between FH and BH since the
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Figure 3.6: Doppler spectrogram of (a) aggregate micro-Doppler from two humans, one walking towards the radar
and one walking away from radar and a rotating table fan, (b) disaggregated micro-Doppler of human walking
towards radar (indicating presence of target) (c) disaggregated micro-Doppler of human walking away from radar
(indicating presence of target) (d) disaggregated return of rotating table fan (indicating presence of target).

returns from TF are weaker. In contrast, the spectrograms of the disaggregated

components shown in Fig.3.6b, Fig.3.6c and Fig.3.6d indicate that all three tar-

gets will be correctly detected.

The hypothesis is that most of the active elements of Ẑ1:I) should be located

in Ẑi where i is the class to which the signal belonged and hence the vector

is dense. Strength of sparse coefficients Z = [Z1Z2Z3] for some of the cases

are shown in Fig.3.7. When the target is present, corresponding coefficients are

dense with higher strength which are clearly visible in the spectrograms.
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(a) (b)

(c) (d)

Figure 3.7: Density of ‖Z‖ when (a) FH is present and BH, TF are absent, (b) BH is present and FH, TF are absent,
(c) FH and TF are present and only BH is absent and (d) FH and BH are present and only TF is absent

3.3.2 Classification results for SRC

The measurement data belonging to the single, two and three target scenarios

are classified into one of three classes (FH, BH or TF) using the SRC algorithm

discussed in Section 3.1.2. The results are presented in Table 3.3. In the single

target scenario case (FH / BH / TF), the classifier most often picks the correct

class for the target. The average accuracy for this scenario is 85%. This confirms

the hypothesis that micro-Doppler signatures are useful tools for classifying

moving targets. For comparison purposes, LC-KSVD algorithm reported in

[98] is applied to the single target data and obtained 75% classification accuracy.

The classifier is mostly confused between the FH and BH classes. Next, the
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performance of the algorithm is examined when multiple targets are present in

the channel. The results for the two targets scenarios FH + TF and BH + TF,

cases show that the classification performance is skewed towards the targets

with the stronger radar cross-section (humans). In other words, the returns from

the weaker targets (TF) are treated as noise by the algorithm. On the other hand,

when both the targets are humans (FH + BH), and therefore, of comparable radar

cross-sections, the classifier pretty evenly distributes the cases between them. In

the case of the three target scenario (FH + BH + TF), the classification accuracy

is again skewed towards the stronger targets (humans) in favor of the weaker

TF. These results show that the classifier can accurately detect the strongest

target when all other moving objects in the background give rise to much weaker

returns. The performance of the classifier deteriorates when there are multiple

targets with comparable backscatter.

Table 3.3: Classification of radar data across human walking towards radar (FH), human walking away from the
radar (BH) and rotating Table Fan (TF) Classes. here P is the predicted class and T is the true class

Cases( T/P) FH (%) BH (%) TF (%)
Single target-FH 92 8 0
Single target-BH 6 94 0
Single target-TF 20 10 70
Two targets-FH+TF 82 10 8
Two targets-BH+TF 6 84 10
Two targets-FH+BH 52.5 47.5 0
Three targets-FH+BH+TF 40 60 0

3.3.3 Detection results after disaggregation of micro-Doppler data

The disaggregation algorithm, unlike the classification algorithm, is meant for

the detection of multiple targets. This time, the measurement data from four
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target class labels (FH, BH, SH and TF) are considered. The resultant detection

accuracies for the single, two, three and four targets scenarios are presented in

Table 3.4. An average true detection accuracy of 98.5% is achieved for the four

single target scenarios (FH / BH/ SH / TF) while the false alarm rate is 4.4%.

When the two target scenarios is examined - the algorithm is able to detect

both the targets in 88% of the FH + TF cases, 94% in BH + TF cases, 80% in

FH + BH and 98% in SH + TF cases. This result demonstrates the usefulness of

the disaggregation algorithm when compared to the classification algorithms for

the detection of multiple targets. The algorithm was also able to detect the weak

target (TF) in the presence of strong targets (FH, BH, and SH). It also detected

two targets of comparable returns. However, the limitation is that the presented

method has a high false alarm rate. This is because when two targets are present,

there is a high probability of the overlap of the signals in the frequency domain.

The performance of the disaggregation algorithm is further investigated in

the three target scenario. When three targets move simultaneously, it is al-

most impossible not to have micro-Doppler overlap. Despite this, the algorithm

detects all three targets in 96% of the cases. Obviously, the humans are fa-

vored (more than 95% detection accuracy) since they have stronger radar cross-

sections. Finally, our approach is tested in four target scenario where FH, BH,

SH and TF moved simultaneously in the same channel. Here, detection accu-

racies for SH and TF are 100% where as for FH it is 87.5%. For the case of

BH the accuracy dropped to 67.5%, this can be attributed to the weaker return

signals in some of the BH cases in comparison to SH and FH and shadowing of
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BH by SH and FH.

Table 3.4: Detection based on disaggregation of data from human walking towards radar (FH), human walking away
from radar (BH) and rotating table fan (TF)

Scenario( T/P) True Detections (%) Missed Detections (%) False Alarms (%)
Single target-FH FH:100 FH:0 FH:NA

BH:NA BH:NA BH:4
TF:NA TF:NA TF:14

Single target-BH FH:NA FH:NA FH:12
BH:100 BH:0 BH:NA
TF:NA TF:NA TF:8

Single target-SH FH:NA FH:NA FH:0
BH:NA BH: NA BH:0
TF:NA TF:NA TF:0
SH:100 SH:0 SH:NA

Single target-TF FH:NA FH:NA FH:2
BH:NA BH: NA BH:0
TF:94 TF:6 TF:NA

Two targets-FH+TF FH:88 FH:12 FH:NA
BH:NA BH: NA BH:12
TF:94 TF:6 TF:NA

Two targets-BH+TF FH:NA FH:NA FH:28
BH:94 BH:6 BH:NA
TF:96 TF:4 TF:NA

Two targets-FH+BH FH:87.5 FH:12.5 FH:NA
BH:80 BH:20 BH:NA
TF:NA TF:NA TF:52.5

Two targets-SH+TF FH:NA FH:NA FH:22
BH:NA BH: NA BH:0
TF:98 TF:2 TF:NA

SH:100 SH:0 SH:NA
Three targets-FH+BH+TF FH:95 FH:5 FH:NA

BH:90 BH:10 BH:NA
TF:90 TF:10 TF:NA

Three targets-SH+FH+TF FH:95 FH:5 FH:NA
BH:NA BH: NA BH:0
TF:100 TF:0 TF:NA
SH:100 SH:0 SH:NA

Three targets-SH+BH+TF FH:NA FH:NA FH:25
BH:95 BH: 5 BH:NA
TF:100 TF:0 TF:NA
SH:100 SH:0 SH:NA

Four
targets-FH+BH+TF+SH

FH:87.5 FH:12.5 FH:NA

BH:67.5 BH: 32.5 BH:NA
TF:100 TF:0 TF:NA
SH:100 SH:0 SH:NA

Average 94 6 11
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3.4 Summary

A supervised dictionary learning technique is used to represent micro-Doppler

from dynamic targets. These dictionaries result in sparser representations of the

radar signals than the classical data-independent dictionaries such as wavelets

or Fourier. These data-driven dictionaries can be used to disaggregate the super-

posed radar signals obtained from multiple targets into individual components.

This enables the detection of weak targets that would otherwise be missed in

the presence of stronger returns.

The algorithm’s performance has been evaluated for detecting four indoor

targets three humans and a table fan. The overall detection accuracy across

single, two, three, and four targets scenarios is 94%, and the false alarm rate

is 11%. Note that the false alarm values are not a function of the threshold

selected in the algorithm and are instead due to the limitations in the dictionary

learning algorithm. The discrimination capability of the dictionaries is governed

by the degree of overlap in the micro-Dopplers. In all of the above cases, it is

assumed that each target class (FH, BH, SH, or TF) consists of only a single

target. The algorithm can be applied to disaggregate data where each class

may comprise of several targets. However, there will be a need to incorporate

additional complexity (hardware or software) to determine the actual number of

targets within each class.
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Chapter 4

Classification of Human Micro-Dopplers

Across Multiple Carrier Frequencies

Over the last decade, classification of human motions based on their micro-

Dopplers has attracted significant research focus for applications as diverse as

law enforcement, indoor tracking, fall detection and assisted living [47, 58, 12,

48, 52, 17, 20, 51, 54, 15, 13]. However, in all of these cases, the radar system

conditions and the propagation channel under training and test scenarios have

been nearly identical. To demonstrate the actual use of radar micro-Dopplers in

real-world scenarios, one needs to consider two factors - One, situations where

the test conditions vary significantly from the training conditions. For instance,

in indoor tracking, the presence of Wi-Fi or other wireless devices at specific

bands (say 2.4 or 5.8GHz) may considerably interfere with the radar [99]. Al-

ternatively, the walls being dispersive mediums may support certain frequencies

over others. Therefore, a degree of reconfigurability or versatility is desired in

the radar hardware parameters - such as the carrier frequency - which can be
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achieved using software-defined radar platforms. Simultaneously, the classifica-

tion algorithms need to use non-heuristic methods to derive features to handle

the diversity in the training and test data. Second, the classification must occur

real-time.

In the previous chapter, the performance of dictionary learning was stud-

ied for single-channel source separation of radar micro-Dopplers [100]. In this

chapter, a low computationally complex dictionary learning framework is pre-

sented for classifying different human motions using diverse multi-frequency

training and test data. Here, three recent dictionary learning algorithms are

investigated for classifying human micro-Doppler data gathered across mul-

tiple carrier frequencies. These are the synthesis dictionary learning (SDL)

[101, 64, 102], the deep dictionary learning (DDL) [65] and the analysis dic-

tionary learning (ADL) algorithms [103, 104, 66, 105]. In SDL, we learn to

express the training signals from each class using a linear combination of a few

dictionary atoms. These dictionaries are fine-tuned to the underlying signals and

are useful signatures for discerning the right target during classification. The

SDL uses a single layer sparse representation for each target class. In emerging

learning methodologies, the depth of representation is perceived as a key aspect

towards successful classification. Therefore, we extend the shallow dictionary

learning, in SDL, into multiple levels also known as deep dictionary learning.

Here, the representation from each layer acts as an input to the subsequent layer.

Each succeeding layer, thus, requires fewer features. The classification is car-

ried out using the representation from the last layer and thus requires a much
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lower computation time than SDL. The ADL is an alternative paradigm to the

SDL. Here, a dictionary directly operates on the data to obtain its sparse repre-

sentation. The key difference is that during the test phase, the sparse features

required for classification are directly obtaining without requiring any inverse

operation. As a result, the ADL involves the least computational cost and time.

All three algorithms, trained with data from a set of carrier frequencies, are

used to classify test data from another distinct carrier. We benchmark the per-

formance of the presented data features with others such as LC-KSVD [98],

PCA [14], physical features (PF) [12], DCT coefficients [106], and cepstral co-

efficients [107] in terms of their classification accuracy and computational time.

4.1 Theory

In this section, we present the synthesis, deep and analysis dictionary learning

algorithms for real-time classification of micro-Doppler data across multiple

carriers.

4.1.1 Synthesis Dictionary Learning (SDL)

The objective of the algorithm is to first learn to represent the time-domain

micro-Doppler signal, yc, of cth dynamic target with only few basis vectors, Dc,

and a sparse coefficient vector, zc

yc = Dczc. (4.1)
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Figure 4.1: Synthesis dictionary learning framework

Subsequently, Dc will be used for classification purposes - both at the training

and at the test stages. Figure 4.1 provides a pictorial representation of the equa-

tion. The red columns of dictionary matrix Dc, are linearly combined with co-

efficient values, colored red in zc, to represent a signal vector yc. As indicated

in the figure, zc is sparse. The learning problem in (4.1) is non-convex and

solved using an alternating minimization technique. Consider a training data

matrix Yc ∈ <N×M . These are micro-Doppler measurements captured at mul-

tiple carrier frequencies for cth target class. Each of the M columns represents

an independent N -dimensional time-domain radar signal measurement. Learn-

ing the corresponding dictionary, Dc ∈ <N×K , and sparse code, Zc ∈ <K×M ,

fundamentally involves minimizing the objective function, J(Dc,Zc), shown in

J(Dc,Zc) = min
Dc,Zc
‖Yc − DcZc‖2

F s.t. ‖Zc‖0 ≤ τ. (4.2)

Here, K defines the number of atoms in the dictionary Dc and τ is the sparsity

level in Zc which is controlled by the l0-norm to ensure sparse representation

of Yc. l0-minimization is NP-hard [92]. Zc can be updated using greedy match-

ing pursuit algorithms such as orthogonal matching pursuit (OMP) [108, 109].
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Alternatively, (5.3) can be relaxed to a higher order convex l1-minimization

problem shown in

J(Dc,Zc) = min
Dc,Zc
‖Yc − DcZc‖2

F + λ ‖Zc‖1 . (4.3)

λ ∈ < is the regularization parameter that balances the trade-off between the

data representation accuracy and sparsity. We solve (4.3) using a two-stage

iterative procedure. First, we initialize the dictionary matrix using randomly

selected signal vectors from the training data, Yc. Given Dc, the coefficient

matrix Zc is updated using (4.4) which is known as Least Angle Shrinkage and

Selection operator (LASSO) [110].

Zc = min
Zc
‖Yc − DcZc‖2

F + λ ‖Zc‖1 (4.4)

The literature has a plethora of techniques for solving a l1-minimization prob-

lem. In this dissertation, we solve (4.4) using the iterative soft-thresholding al-

gorithm (ISTA) discussed in [111]. Once Zc is obtained, estimating Dc reduces

to a least squares problem [94] which is solved using

Dc = min
Dc
‖Yc − DcZc‖2

F s.t. ‖dc,m‖2
2 ≤ 1 ∀ m = 1, 2, ...M. (4.5)

At each iteration, the columns of the dictionary are normalized to have a unit

norm to prevent scale ambiguities arising due to differences in strengths of the

received signals from targets of varying radar cross-sections. We alternate be-

tween (4.4) and (4.5) till the algorithm converges.
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Figure 4.2: Synthesis dictionary learning framework for multiclass classification

Then, we concatenate the dictionaries from all of the C classes to form a

single, over-complete D ∈ <N×KC shown in

D = [D1 D2 D3 ..DC ]. (4.6)

This aggregate dictionary is used to generate the sparse coefficient matrix, Z̃c ∈

<KC×M , for each class, c using

Z̃c = min
Z̃c

∥∥∥Yc − DZ̃c

∥∥∥2

F
+ λ

∥∥∥Z̃c

∥∥∥
1
. (4.7)

Note that Z̃c is distinct from Zc obtained from (4.4). We hypothesize that if the

target belongs to target class c, the representation must be a linear combination

of few atoms of the corresponding dictionary Dc. This is shown in Fig.4.2.

Here the red columns show the active atoms of the aggregate dictionary and

corresponding red rows in Z̃c indicate the non-zero values of the coefficient

matrix. Therefore, Z̃c will mostly have significant values at similar positions

for target class c while the remaining values will be either zero or negligibly

small. In other words, Z̃c will exhibit distinct row sparsity patterns for different
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target classes c amid the cluster of coefficients belonging to all classes. The

columns of sparse coefficient matrices, Z̃c, from all the target classes are used

as input training features for a support vector machine (SVM) classifier with

a linear kernel function (consistent across all the algorithms). The SVM is a

popular classifier that has been extensively used for numerous machine learning

applications.

Each radar test signal, ytest, is a single time-domain micro-Doppler measure-

ment at a distinct carrier frequency from those used while training. We find the

sparse features vector, z̃test ∈ <KC×1, from ytest using D as shown

z̃test = min
z̃test
‖ytest − Dz̃test‖2

F + λ ‖z̃test‖1 . (4.8)

Similar to the training phase, the intuition here is that if the test sample ytest

belongs to c class, the signal will be sparsely represented using few atoms of Dc.

As a result, the entries in the sparse coefficient vector, z̃test, corresponding to

the other classes, will be either zero or negligibly small. Meaning, the sparsity

pattern in z̃test is most likely to resemble columns of Z̃c among all the classes.

Therefore, ztest, is classified by the SVM which is trained using Z̃c.

4.1.2 Deep Dictionary Learning (DDL)

The SDL represents the micro-Doppler data through a single layer representa-

tion. Recent research on deep learning, mostly in neural networks, suggest that

we can extract more fundamental or meaningful features through more profound

representations of data. On similar lines, we extend the single layer dictionary
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Figure 4.3: Deep dictionary learning framework

framework to multiple layers of dictionaries [65]. The first step in the DDL

algorithm is identical to the SDL algorithm. Training samples, Yc, are used to

learn the dictionary and coefficient matrices, D1
c and Z1

c , for the first level of

DDL using the alternating minimization technique described in (4.4) - (4.5).

J(D1
c,Z

1
c) = min

D1
c ,Z

1
c

∥∥Yc − D1
cZ

1
c

∥∥2

F
+ λ1

∥∥Z1
c

∥∥
1

(4.9)

For each successive nth layer (n = 2 on wards to N total layers), we learn the

corresponding dictionary and coefficient matrices from the coefficients of the

previous layer such that Zn−1
c = Dn

cZn
c as shown in Fig.4.3.

J(Dn
c ,Z

n
c ) = min

Dnc ,Z
n
c

∥∥∥Z(n−1)
c − Dn

cZn
c

∥∥∥2

F
+ λn ‖Zn

c ‖1 (4.10)

The class dictionary, Dc, is formed as a product of the multi-level dictionaries

shown in

Dc = D1
c × D2

c × D3
c.....× DN

c . (4.11)

The size of the class dictionary, Dc, learned using an N -layer deep architecture

is substantially reduced from the single layer class dictionary learned in SDL.
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In other words, as we opt for deeper networks, we need fewer features for rep-

resenting the radar signals. The computation time in the training stage of DDL

is greater than SDL due to the incorporation of the additional layers of learning.

The class dictionaries from multiple classes are concatenated to form D which

is subsequently used for classification in a similar manner to (4.6) - (4.8). The

sparse coefficient vector Z̃c obtained from the training micro-Doppler data Yc,

is used to train the SVM. Once the model is trained, z̃test, is classified similarly

to SDL. Due to the reduced dimensionality of z̃test compared to SDL, the deep

learning framework is faster during the test stage.

4.1.3 Analysis Dictionary Learning (ADL)

The algorithms discussed in Sections.4.1.1 and 4.1.2 belong to the synthesis

framework where a signal yc is synthesized with the linear combination of only

a few atoms of the dictionary, leading to its sparse representation. An alternative

generative framework - known as the analysis framework - is where a dictionary

operates on yc to generate its sparsest form zc = Dcyc as shown in Fig.4.4. Un-

like SDL which focuses on classification based on sparsity (number and position

of non-zero) patterns in the representation of the signals, here, the co-sparsity

patterns (number of zeros) in zc are utilized for distinguishing between multiple

classes. The blue rows indicate these in the figure. The hypothesis here is that

the signals belonging to different target classes will exhibit unique co-sparsity

patterns and thus belong to distinct subspaces from which they can be classified.

The objective of ADL is to first learn a unique dictionary Dc ∈ <P×N for each
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Figure 4.4: Analysis dictionary learning framework

target class from the corresponding training data Ŷc ∈ <N×M . When Dc oper-

ates on Ŷc, it produces sparse features Zc = DcŶc. As mentioned before, M

indicates the number of independent time-domain measurements consisting of

N samples. To obtain high co-sparsity in Zc, the rows of Dc should exhibit high

linear dependencies. Learning Dc involves the minimization of the following

objective function -

J(Dc, Ŷc) = min
Dc,Ŷc

∥∥∥Yc − Ŷc

∥∥∥2

F
s.t.
∥∥∥DcŶc

∥∥∥
0
≤ τ (4.12)

We relax the l0 constraint to its nearest convex form by taking l1 norm.

J(Dc, Ŷc) = min
Dc,Ŷc

∥∥∥Yc − Ŷc

∥∥∥2

F
+ λ

∥∥∥DcŶc

∥∥∥
1

(4.13)

We solve (5.4) using a variable splitting technique. To solve the problem more

efficiently, we introduce a proxy variable Zc such that the new objective function

becomes

J(Dc, Ŷc) = min
Dc,Ŷc

∥∥∥Yc − Ŷc

∥∥∥2

F
+ λ ‖Zc‖1 s.t. Zc = DcŶc (4.14)
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Here, solving exact Lagrangian is not desired.Therefore we formulate the final

objective function as augmented Lagrangian [105] shown in (4.15)

min
Dc,Ŷc,Zc

∥∥∥Yc − Ŷc

∥∥∥2

F
+λ ‖Zc‖1+µ

∥∥∥Zc − DcŶc

∥∥∥2

F
s.t. ‖dc,m‖2

2 ≤ 1∀m = 1, 2, ...M

(4.15)

Here, λ acts as a regularizer trading off between representation error and spar-

sity. µ is a hyper-parameter that controls the equality between Zc and its rep-

resentation DcŶc. For a high value of µ, equality is enforced. Otherwise, the

constraint is relaxed. We further ensure that each row of Dc is constrained to

have a unit norm to prevent scale ambiguities due to variations in the signal

strengths. Similar to synthesis framework we solve (5.4) using a two-stage it-

erative framework. We initialize Dc and Ŷc, using randomly selected samples

from the training data gathered at multiple carriers. The co-sparse coefficient

matrix is obtained by Zc = DcŶc. During the first stage of the iterative frame-

work, Zc and Ŷc are held constant and Dc is updated using least squares. In the

second stage, we solve for Ŷc using the least squares as shown in

min
Ŷc

∥∥∥Yc − Ŷc

∥∥∥2

F
+ µ

∥∥∥Zc − DcŶc

∥∥∥2

F
. (4.16)

This is equivalent to solving the least squares problem defined in

min
Ŷc

∥∥∥∥∥∥∥
 Yc

√
µZc

−
 I
√
µDc

 Ŷc

∥∥∥∥∥∥∥
2

F

. (4.17)
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Finally, we update Zc using the soft-thresholding method shown in

Zc = soft(DcŶc, γ). (4.18)

Here, γ = λ/2µ, is the threshold that we select for the co-sparse coefficient

vector. The function above is defined as

soft(DcŶc, γ) = sign(DcŶc)×max(0,
∣∣∣DcŶc

∣∣∣− γ) (4.19)

The iterative procedure is continued until the objective function J(Dc, Ŷc,Zc)

converges to some local minimum. The class dictionaries from different target

classes are then concatenated to form an aggregate dictionary D. We train an

SVM using the co-sparse features Z̃c = DYc, corresponding to each class. Dur-

ing the test phase, the SVM classifies the co-sparse feature vector z̃test = Dytest

of the test micro-Doppler data ytest. Note that the ADL is significantly faster in

generating features at test time as compared to its synthesis counterpart as the

feature generation in ADL involves only a simple product operation instead of

the inverse operation in (4.8). This makes the algorithm more suited for real-

time applications.

4.2 Measurement Data Collection

In this section, we describe the experimental set up used to generate measure-

ment micro-Doppler data at multiple carrier frequencies. We again used the

same set up based on the hardware described in Chapter 2, Section 2.3.2. How-
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Figure 4.5: Monostatic CW radar configured using a vector network analyzer and two linearly polarized horn
antennas for five distinct carrier frequencies - 2.4, 3, 4, 4.5 and 5.8GHz

ever, this time the radar set up is used for measurement data collection where

only single dynamic target is considered in the propagation environment for the

task of classification. All of the measurements are conducted in indoor, line-of-

sight conditions.

4.2.1 Measurement Set Up

The VNA shown in Fig.4.5, is configured to the narrow band mode with a band-

width of 10Hz and a center frequency of any one of five carrier frequencies - 2.4,

3, 4, 4.5 and 5.8 GHz. We considered a set of lower carrier frequencies to avoid

aliasing issues since the sampling frequency is limited to 370Hz by the VNA

hardware. The duration of each measurement is 27 seconds. The measured data

are further segmented to 10 shorter signals, each of 2.7 seconds duration.

We consider four distinct target classes. Three target classes consist of hu-

man motions. The fourth target class is a table fan (TF) with rotating blades. We

have specifically chosen this distinct fourth target class since a table fan gives
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Table 4.1: Description of test and training scenarios across multiple carrier frequencies

Folds
Test Data Carrier

Frequencies
Training Data Carrier

Frequencies
Fold 1 2.4GHz 3, 4, 4.5, 5.8GHz
Fold 2 3GHz 2.4, 4, 4.5, 5.8GHz
Fold 3 4GHz 2.4, 3, 4.5, 5.8GHz
Fold 4 4.5GHz 2.4, 3, 4, 5.8GHz
Fold 5 5.8GHz 2.4, 3, 4, 4.5GHz

rise to micro-Doppler signatures that can contribute to significant clutter in radar

tracking of humans in indoor environments. The three human motion categories

that we consider are - human walking in front of the radar (HW), two humans

walking before the radar (TH) and a person standing and boxing his arms (HB).

For each of these categories, we conducted measurements with 20 subjects of

different heights, gait patterns, velocities, gender, and ages. These measure-

ments were repeated for each of the five different carrier frequencies mentioned

above. The human motions were completely unrestricted. They, therefore, con-

sist of motion transitions such as starting from rest, acceleration, turns, slowing

down to halt, etc. Next, measurements were carried out with the table fan at

different angular speeds, distances, and orientations with respect to the radar at

the five carrier frequencies. There are therefore a total of 100 measurements for

each motion category of which 80 measurements corresponding to 4 carrier fre-

quencies are used for training the dictionary learning algorithms. The remaining

data (20 measurements) corresponding to the fifth carrier frequency are used as

test data. Table 4.2 summarizes the entire data collection. The complete data set

and its detailed description is available on url: https://bit.ly/2L8W4KT.

The targets move before the radar between 1m and 10m distance. If we assume
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Table 4.2: Measurement Data Description

Target Scenario and
Description Target Parameters Training Data Test Data

Two humans walking
(TH),
Human boxing
(HB),
Human walking
(HW)

Number of humans: 20
Target Heights: 5ft to 6ft
Target Velocities: 0.6m/s to 1.5m/s
Number of measurements = 100
(5 measurements from each
of 20 subjects)

80
(5 measurements from
each of 4 carrier
frequencies)

20
(5 measurements from
fifth carrier frequency)

Table fan (TF)

Number of fans: 1
Angular velocities: 1400 rpm,
2000 rpm
Locations from radar : 10
Number of measurements = 100
(5 measurements from each
of 20 cases)

80
(5 measurements from
each of 4 carrier
frequencies)

20
(5 measurements from
fifth carrier frequency)

the human to have an average radar cross-section of 1m2, then the approximate

dynamic range in the measurement data is 30dB (between -68 and -98 dBm).

The radar cross-section of the table fan is much lower and can, therefore, result

in weaker returns, sometimes close to the noise floor, especially when the fan is

at an inclination away from the radar at 10m.

4.2.2 Micro-Doppler Spectrograms Across Multiple Carriers

The classification algorithms are posed with some unique challenges when the

training and test measurement data are gathered under different conditions. We

illustrate these challenges by presenting the micro-Doppler spectrograms for

these motions for two carrier frequencies in Fig.4.6. The spectrograms are gen-

erated using the short-time Fourier transform with a dwell time of 0.05 seconds.

The figures on the left column correspond to data generated at 2.4GHz while

the figures from the right column correspond to 5.8GHz data. These are the

lowest and highest carrier frequencies that we had selected for our experimen-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: STFT spectrograms of (a, b) two walking humans - one walking towards the radar and the other walking
away from the radar, (c, d) a human walking towards the radar, (e, f) a human boxing and (g, h) a rotating table fan.
The figures in the left columns are generated from data collected at 2.4GHz and figures in the right columns are
generated from data collected at 5.8GHz
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tal purposes. The first row - Fig.4.6(a) and Fig.4.6(b) - show the spectrograms

corresponding to two humans walking before the radar. One human walks to-

wards the radar, with mostly positive micro-Dopplers, while the second walks

away from the radar, with mostly negative micro-Dopplers. The legs give rise to

higher Dopplers than the arms or torso. These leg micro-Dopplers can occasion-

ally be aliased to lower frequencies especially at 5.8GHz as seen in Fig.4.6(b).

The next two figures, Fig.4.6(c) and Fig.4.6(d), correspond to the human walk-

ing before the radar. Again, in these figures, we observe that the strongest

returns arise from the torso while the limbs contribute to much weaker returns.

This is especially evident in Fig.4.6(d). This is because of the lower cross-

section of the limbs and due to shadowing of one limb by another. Fig.4.6(e)

and Fig.4.6(f) show the micro-Dopplers from a human standing still and box-

ing his arms. Here the torso Doppler is mostly around 0Hz since there is no

translational motion of the human. Similarly, the legs do not have a distinct

Doppler. Instead, we observe both the positive and negative Dopplers arising

from the swinging motion of the boxer’s arms. The last two figures, Fig.4.6(g)

and Fig.4.6(h), are derived from the rotation of the three blades of the table fan.

The rotation motion of the blades of the fan gives rise to micro-Dopplers that

are a function of the number of blades, the angular speed of rotation, the orien-

tation of the blades with respect to the radar and the length of the blades. Due to

the low sampling frequency, the spectrograms of the table fans show significant

aliasing across all the carrier frequencies.

These figures highlight the key challenges before the classification problem.
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The algorithm, trained with data gathered at particular carrier frequencies (say

2.4GHz to 4.5GHz data) must successfully classify data belonging to 5.8GHz.

Some of the important factors to be taken into consideration are listed below.

1. The figures demonstrate that the Doppler spectrograms corresponding to

high carrier frequency data (in the right column) show finer frequency res-

olution than those from low carrier frequency data (in the left column).

This is particularly evident in the case of the three human motion classes.

2. The sampling frequency is identical for all the measurements. Therefore,

there is a much higher probability of aliasing to occur at 5.8GHz (especially

if the human moves at a high velocity) when compared to the lower carriers.

This problem of aliasing is particularly evident in the case of the table fan

spectrograms as pointed out before. This limitation may give rise to some

errors in classification.

3. There are differences in the micro-Doppler patterns within the same motion

categories arising due to the variation in gait patterns across individuals

(due to their height, weight, age, gender, fitness, and mood).

4. Measurement data have issues arising from shadowing of a target or parts

of a target by the environment or the presence of other targets.

5. Even the measurement data gathered from a single individual, show micro-

Doppler variations due to motion transitions.
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4.3 Measurement Results and Analyses

The measurement data consists of four dynamic target classes- two humans

walking (TH), human boxing while standing still (HB), a single human walking

(HW) and a rotating table fan (TF). First, we consider the single carrier case.

Here, the training and test micro-Dopplers are gathered at the same carrier fre-

quency. Then we discuss the more challenging multi-carrier case. Here, the

training features are obtained from micro-Doppler data from 4 out of 5 carrier

frequencies while the test features are derived from the fifth carrier frequency.

We apply the three dictionary learning frameworks discussed in Section.4.1.1,

4.1.2, and 4.1.3 to the measurement data to study their effectiveness at clas-

sifying micro-Dopplers. We compare their performances with four non-DL

based feature extraction methods that have been used for micro-Doppler sig-

nature classification in recent literature - physical features (PF), DCT coeffi-

cients, cepstral features (CF), and principal components analysis. We also con-

sider another DL based algorithm that was tested recently - the label consis-

tent KSVD (LC-KSVD). The LC-KSVD is also based on the synthesis learning

framework. Unlike the SDL, where class dictionaries are learned individually,

the LC-KSVD learns multi-class dictionaries jointly with regularizers for class-

wise sparsity and inter-class discrimination in its objective function. Secondly,

the algorithm uses l0-norm rather than l1 minimization techniques. For a de-

tailed description of LC-KSVD, we refer readers to [98]. The algorithms are

run in MATLAB 2015b on an Intel(R) Core(TM) i7-5500U CPU running at

70



2.40 GHz; 16-GB RAM, Windows 10 (64 b).

4.3.1 Parameter selection for dictionary learning

We consider a training matrix of size [1000 × 200] for each target class by ran-

domly repopulating the original measurements. Each signal vector has 1000

time domain samples over a duration of 2.7 seconds. We use the SDL technique

described in Section.4.1.1, to learn under-complete class dictionaries each of

size [1000×K]. These dictionaries from the four classes are then concatenated

to form a single aggregate over-complete dictionary of size [1000 × 4K]. The

concatenated dictionary is used to generate a class-specific sparse features ma-

trix of size [4K × 200], which is used to train a support vector machine (SVM)

classifier. We hypothesize that radar signals from different classes will exhibit

distinctive patterns in this sparse features matrix. In the test phase, we use a sin-

gle [1000 × 1] micro-Doppler signal to generate a sparse feature vector of size

[4K × 1]. This vector is classified as one of the four classes by the SVM. We

examine different sizes of class dictionaries, K, and the results are presented in

Fig.4.7(a). The results show that the algorithm is not very sensitive to the size

of K provided the concatenated dictionaries from the four classes (of size 4K)

are over-complete. We choose K = 500.

In the DDL framework, we learn a N -layer deep network with each succes-

sive layer having a reduced dictionary size. We start with a dictionary size of

[1000× 500] to match that of SDL. We considered different depths as shown in

Fig.4.7(b). Our results show that there is an improvement when N = 3 after
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which we lose the advantage of abstraction. Subsequent dictionary sizes are

[500 × 250] and [250 × 100]. The sparse feature matrix used for training the

SVM is of size [100 × 200] and the sparse feature vector used for testing is of

size [100 × 1]. This size is considerably smaller than the SDL. Since the deep

learning architecture requires fewer features for classification as we go down

the hierarchy, the computational complexity during the test phase is reduced.

Finally, in ADL, we learn a class dictionary of size [K × 1000] that will

operate on the training matrix. Again, we examine the effect of different values

of K on the performance of the algorithm. The results are shown in Fig.4.7(c).

The results show that the algorithm’s performance is not very sensitive toK. We

choose K = 500 to make it consistent with the other two dictionary algorithms.

The concatenated dictionary from all four classes, of size [2000×1000], is used

both for training and test. The size of the dictionaries is thus consistent across

all the algorithms. The co-sparse feature matrix used for training the SVM is

of size [2000 × 200] and the co-sparse feature vector, used while testing, is of

size [2000 × 1]. The choice of λ dictates the trade-off between representation

and sparsity error. We show how the performance varies as a function of λ in

Fig.4.7(d). We choose λ = 0.001 for the best results.

We fix three additional parameters in the LC-KSVD algorithm - the inter-

class discrimination that is the weights for label constraint term (α), weights for

classification error term (β) and sparsity prior (S) regularizers. The variation of

these parameters results in minor changes in the classification accuracy (around

3 to 4 %). We select values
√
α = 0.001,

√
β = 0.001 and S = 10 that yield
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Figure 4.7: Variation of classification accuracy with (a) dictionary size for SDL, (b) depth in dictionary layers in
DDL, (c) dictionary size for ADL and (d) Sparsity parameter (λ) for ADL

the best results.

4.3.2 Classification based on single-carrier data

First, we present the classification results for the five-fold single-carrier fre-

quency case in Table 4.3. The training and test for each fold are carried out

on data from the same carrier. The classification accuracy for each entry in

this table is obtained by the average across five folds. The results show 100%

average classification success across five folds in all three synthesis algorithms

(SDL, DDL, and LC-KSVD) and slightly lower performance for the ADL (av-

erage classification accuracy of 98.5%). The results compare favorably with

other classification works on micro-Doppler data presented in literature (PF, CF,

DCT, and PCA). The results show that the micro-Dopplers for these motions are

distinctive and any conventional feature extraction technique is suitable for clas-
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Table 4.3: Comparison of average classification accuracy across multiple algorithms when training and test micro-
Doppler data are gathered at same carrier frequencies

Cases SDL DDL ADL
LC-

KSVD
PF CF DCT PCA

TH 100 100 100 100 95 100 100 100
HB 100 100 100 100 90 100 100 100
HW 100 100 94 100 80 100 100 100
TF 100 100 100 100 100 100 100 100

Average 100 100 98.5 100 91.25 100 100 100

Table 4.4: Comparison of average classification accuracy across multiple algorithms when training and test micro-
Doppler data are gathered at different carrier frequencies

Cases SDL DDL ADL
LC-

KSVD
PF CF DCT PCA

TH 67 68 73 13 89 38 69 58
HB 88 98 67 81 47 63 93 72
HF 93 97 68 25 52 40 56 59
TF 95 99 79 98 100 46 97 37

Average 85.75 90.5 71.5 54.25 72 46.75 78.75 56.5

sification when we consider single carrier data.

4.3.3 Classification based on multiple carrier data

Next, we consider the more challenging scenario - when the training and test

data are gathered at different carrier frequencies. We again consider five fold

classification. Each fold now represents results for training data gathered from

four out of five carrier frequencies and test data from the fifth (remaining) car-

rier. This is fully detailed in Table 4.1. The resulting classification accuracies

are presented in Table 4.4. The results show a significant deterioration in the

classification performance of all the algorithms in comparison to the single car-

rier case. This means that the micro-Dopplers from the multiple motions are

no-longer distinctive. Among the non-DL algorithms, the DCT coefficients are

most successful at classification. However, the performance is inferior to SDL

74



and DDL algorithms.

To understand this further, we visualize the data reduced to a two-dimensional

space using the t-distributed Stochastic Neighbor Embedding technique [?]. We

consider the scatter plots of the raw data, the features extracted by DDL and the

handpicked features extracted by a non-DL method (PF) as shown in Fig.4.8.

Ideally, the four target class data must belong to four distinct clusters. How-

ever, this is not the case for the raw data in Fig.4.8(a). Figure 4.8(b), for PF

case, shows a very distinct cluster for TF but the features from the three re-

maining motions overlap considerably. In the case of DDL, in Fig.4.8(c), The

features from the four classes are mostly well separated - except for few cases

corresponding to TH and HF. These result in the incorrect classifications seen

in Table 4.6.

We examine the performance of SDL, DDL, and ADL in greater detail in the

following sections.

4.3.3.1 SDL

Table 4.5 shows the confusion matrix of the classification results for the SDL

algorithm. Here, the row entries under the header "Test Cases" are the true class

labels for the test micro-Doppler data and the column headers are the class

labels to which the data are classified. The diagonal entries, therefore, indicate

the correct classification results. The overall accuracy for HB, HW, and TF are

superior to TH. TH is mostly confused with HW in all of the five folds. It may

be because the radar returns from the second human may be much weaker than
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(a) (b)

(c)

Figure 4.8: Scatter plot to visualize (a) raw data, (b) handpicked features (PF) and (c) features extracted using DDL

the first, in some instances, due to its greater distance from the radar or because

the first subject shadows the second subject. There are also some instances

when both the humans move in a synchronized manner with respect to the radar

giving rise to overlapped micro-Doppler returns. TH is confused with HB to

a lesser extent. This is likely since both of these signatures show both positive

and negative micro-Dopplers spreads. For the same carrier frequency, the micro-

Doppler spread of the TH is higher than that of the HB due to the absence

of micro-Dopplers from legs in the latter case. However, these spreads could

be similar when we consider data from different carrier frequencies. This is

why the confusion between the TH and HB did not occur in the single carrier
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Table 4.5: SDL results when training and test micro-Doppler data are gathered at different carrier frequencies

Folds Test cases TH HB HW TF

Fold 1

TH
HB
HW
TF

75
0
0
0

10
70
20
0

15
25
80
5

0
5
0
95

Fold 2

TH
HB
HW
TF

65
0
0
0

5
95
15
0

30
5
85
0

0
0
0
100

Fold 3

TH
HB
HW
TF

45
0
0
0

10
90
0
0

45
10
100
0

0
0
0
100

Fold 4

TH
HB
HW
TF

75
0
0
0

15
90
0
0

10
5
100
0

0
5
0
100

Fold 5

TH
HB
HW
TF

75
5
0
0

0
95
0
0

25
0
100
20

0
0
0
80

Recall
Accuracy

67 88 93 95

frequency case while it occurs in the multi-carrier frequency case. HW and HB

are at times confused. Here the confusion arises due to the backswing motion of

the arms and legs while walking that results in some negative Dopplers (when

the human is walking towards the radar). TF shows a poorer performance in the

fifth fold. This can be attributed due to the similarity of micro-Doppler spreads

from both cases due to aliasing of HW at high carrier frequencies.

4.3.3.2 DDL

We present the results of the DDL algorithm in Table 4.6. The DDL shows

an overall superiority to SDL across the classes - especially HB, HW, and TF.

The TH shows the poorest performance and is confused mostly with HW and to
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Table 4.6: DDL results when training and test micro-Doppler data are gathered at different carrier frequencies

Folds Test cases TH HB HW TF

Fold 1

TH
HB
HW
TF

75
0
0
0

15
100
0
0

10
0
100
0

0
0
0
100

Fold 2

TH
HB
HW
TF

70
0
0
0

5
100
5
0

25
0
95
0

0
0
0
100

Fold 3

TH
HB
HW
TF

55
0
0
0

10
95
0
0

30
5
100
0

5
0
0
100

Fold 4

TH
HB
HW
TF

70
0
0
0

5
100
5
0

25
0
90
0

0
0
5
100

Fold 5

TH
HB
HW
TF

70
5
0
0

0
95
0
0

30
0
100
5

0
0
0
95

Recall
Accuracy

68 98 97 99

a lesser extent with HB. Again, this poor performance can be attributed to the

underlying challenge in distinguishing two targets with a radar system of limited

dynamic range and frequency resolution. The superiority of the performance of

DDL to SDL shows that the deeper representations lead to extraction of more

fundamental features from measurement data.

4.3.3.3 ADL

The performance of the ADL is very poor compared to SDL and DDL across

all classes except TH as seen in Table 4.7. It is an important observation since

the TF class has hitherto been classified successfully (above 90%) by the other

dictionary learning algorithms. The ADL results in this table mark a significant
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Table 4.7: ADL results when training and test micro-Doppler data are gathered at different carrier frequencies

Folds Test cases TH HB HW TF

Fold 1

TH
HB
HW
TF

70
0
10
0

10
55
25
0

20
25
60
5

0
20
5
95

Fold 2

TH
HB
HW
TF

90
0
5
0

0
70
25
30

10
25
50
5

0
5
20
65

Fold 3

TH
HB
HW
TF

75
0
0
0

10
75
0
0

15
20
60
0

0
5
40
100

Fold 4

TH
HB
HW
TF

50
0
5
0

15
60
10
0

35
30
80
5

0
10
5
95

Fold 5

TH
HB
HW
TF

80
20
10
0

5
75
0
0

15
5
90
60

0
0
0
40

Recall
Accuracy

73 66 68 79

departure from the previous ADL results reported in Table 4.3 (measurement

data with identical training and test scenarios). From these observations, we

infer that the ADL algorithm is heavily impacted by the aliasing in the measure-

ment data, both during training and testing. In particular, aliasing occurs for the

TF data across all carriers. The human motions data, on the other hand, are im-

pacted more severely at the higher carrier frequencies. The performance of the

ADL depends on the ability of the algorithm to generate a unique co-sparse rep-

resentation of the data from each class. To ensure rich co-sparsity in the signal

representation, the class dictionaries must exhibit a high degree of row-wise lin-

ear dependency. The algorithm fails to achieve this when there are overlaps in

the micro-Doppler signal spreads due to aliasing. This problem does not occur
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in the single carrier case.

Table 4.8 also shows the computational time required during the test and

training phases for all the algorithms. The training phase includes the time taken

to learn the training features matrices for the SVM (for SDL, DDL, ADL, PF,

CF, and DCT) as well as training the SVM. The training time for the DL algo-

rithms is considerably higher than the non-DL methods since they involve learn-

ing class-specific dictionaries. In particular, the LC-KSVD takes the longest

training time since it requires a l0-norm computation using a greedy approach.

The SDL, DDL, and ADL algorithms use the faster l1-minimization operation

instead. The table shows that the DDL algorithm takes longer than the SDL dur-

ing the training phase since generating class-specific dictionaries includes learn-

ing at multiple layers. The ADL and PF take equivalent training time while CF,

DCT, and PCA have the lowest training times as these use fixed dictionaries

and do not involve any inverse operation. In the case of PF, the features are

extracted from micro-Doppler spectrograms whose generation consumes most

of the training time. The training time, though an important consideration for

practical deployment, does not factor into actual radar operation which depends

only on the test time. The test time includes the time taken to generate the test

features and the time used by the SVM to classify these features in all the al-

gorithms. The second step is mostly identical across all the algorithms and is

approximately 0.01 seconds. We observe that the ADL requires the lowest com-

putational time. It is because the test feature extraction in ADL uses a single

matrix multiplication operation which is computationally much more straight-
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Table 4.8: Comparison of overall classification accuracy and computational complexity

Algorithm
Training

time
(seconds)

Test time
(seconds)

Classification
accuracy (%)

SDL 414.9 3.4 85.75
DDL 631.5 0.2 90.50
ADL 291.3 0.07 71.50

LC-KSVD 1815.3 0.2 50.25
PF 232.9 0.9 72
CF 2.96 0.4 46.75

DCT 4.15 0.76 78.75
PCA 3.1 0.47 56.5

forward than the matrix inversion operation in SDL and DDL (4.8). The DDL

takes less time than SDL because the inversion operation in the case of DDL

involves a matrix of reduced dimensionality due to the multi-layer dictionary

synthesis. The baseline algorithms such as LC-KSVD, PF, CF, DCT, and PCA

are also computationally inexpensive. The DDL is therefore comparable to the

non-DL algorithms. In conclusion, the ADL algorithm offers some exceptional

advantages regarding computational time and complexity. However, its perfor-

mance, in our study, is limited by radar system issues such as the low sampling

frequency. The CF, PCA also lend themselves to real-time operation - but they

are not very successful when there are considerable variations between test and

training data. The SDL and DDL algorithms, on the other hand, successfully

learn unique dictionaries from multi-carrier data despite the system challenges.

The DDL, in particular, is suited for real-time micro-Doppler classification due

to its short testing time and high classification accuracy.
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4.4 Summary

We demonstrate three sparse coding-based dictionary learning techniques - SDL,

DDL, and ADL - to classify micro-Doppler data from dynamic indoor targets.

These algorithms facilitate the representation of radar signals using unique basis

vectors even when the training data are gathered from multiple carrier frequen-

cies. As a result, these class dictionaries successfully classify test data from

a different carrier frequency from those used while training. This capability

makes these algorithms suitable for re-configurable radar platforms for human

tracking under diverse operating situations. The SDL and DDL use unique spar-

sity patterns while the ADL uses the unique co-sparsity patterns of the repre-

sentations of the radar signals for classification. The computational complexity

of the ADL, in the test phase, is much lower than the SDL and DDL. However,

in our study, the ADL’s performance was limited by radar system issues. As

a result of using multi-layered dictionary learning in DDL, the algorithm has

better classification accuracy and a much shorter computation time during test-

ing in comparison to the single layer SDL thus making it an ideal candidate for

real-world scenarios where low computational complexity and high accuracy

are desired.
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Chapter 5

Mitigation of Through-Wall Distortions in

Frontal Radar Images

In the previous two chapters, the usefulness of representing human micro-Dopplers

with customized data-dependent dictionaries is investigated for mainly two ap-

plications - detection and classification of human activities on the basis of

their micro-Doppler returns. In this chapter, we discuss micro-Doppler based

through-the-wall radar imaging (TWRI) for monitoring human activities in ur-

ban environments. There are varied applications for TWRI such as law enforce-

ment, security, and surveillance, search and rescue, and indoor monitoring of

the elderly [112, 53, 43, 79, 61].

There are broadly two categories of through-the-wall radars: narrowband

and broadband. Broadband radars provide excellent downrange resolutions to

locate and resolve multiple targets as well as for estimating building layouts

[113]. Alternatively, narrowband CW radars have been developed to detect dy-

namic targets based on their Doppler signatures [114, 53, 43]. Both of these
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systems can be complemented with two-dimensional array processing to pro-

vide either range-enhanced frontal images or Doppler-enhanced frontal images

[71, 72]. Frontal images of the humans provide informative signatures of their

activities [70]. However, when the radars are deployed in through-wall scenar-

ios, the quality of the radar images significantly deteriorate due to the through-

wall propagation artifacts such as - attenuation, defocussing and multipath clut-

ter [43, 71, 115, 75, 116].

Indoor clutter can be broadly categorized into target independent static and

dynamic clutter, and target dependent clutter. Target independent static clutter

arise from the reflections off the wall (especially the front face in a through-wall

scenario), ceiling, floor, and furniture. Static clutter is easy to eliminate through

filtering when the objective is to detect dynamic targets. The problem becomes

more challenging in the context of detection of static and slow-moving targets.

Authors in [117] assumed the availability of background data that could be co-

herently subtracted from the target measurements. Alternatively, sparsity-based

multipath exploitation methods were explored in [118, 119, 120]. Here, the

algorithm leveraged the orthogonality between the static clutter and the target

scattering to mitigate the clutter. Target independent dynamic clutter arising

from other moving objects in the environment can significantly interfere with

Doppler signatures of moving targets. In Chapter 2, we presented a method

to segregate the Doppler returns from multiple targets. This technique could

be used for mitigating target-independent dynamic clutter. The third category

is target dependent clutter that arises from the interactions of the target (static
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or dynamic) and the complex propagation channel. As a result of refraction

and multipath, the radar images are smeared, blurred, and there are shifts in

the location of point scatterers in the images [71]. The authors in [121] and

[122] used back-projection and sparsity-based change detection algorithms, re-

spectively, to track slow-moving humans in the range-crossrange space in the

presence of target-dependent clutter. Both these techniques, however, rely on

the availability of accurate knowledge of the through-wall scenarios for detect-

ing static targets. Alternatively, the authors in [123, 73] exploited the multipath

(instead of suppressing the multipath) to improve the effective signal-to-clutter

ratio (SCR) at the original target locations. They removed ghost artifacts by

mapping the multipath ghosts to their true targets. Again the technique requires

exact information of the room geometry and wall characteristics.

In this chapter, we present an alternative strategy, based on denoising au-

toencoders, for recovering radar images corrupted by through-wall effects. An

autoencoder is a neural network that extracts relevant features from the noisy

input data for various tasks such as- dimensionality reduction and data denois-

ing [124, 125]. Autoencoders have been widely used for applications such as

anomaly detection, natural language processing, denoising and domain adap-

tation [126, 127, 124, 128]. Some preliminary results for clutter mitigation

using autoencoders were presented in [129] where the nature of the type of

through-wall scenario was assumed to be known during the test phase. The

primary advantage of this technique is, however, that the autoencoders require

neither prior information regarding the wall characteristics nor any kind of ana-
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lytic framework to describe the through-wall interference. Instead, the distorted

radar signatures due to wall interference are treated as corrupt versions of ideal

radar signatures obtained in free space conditions. The algorithm learns how

to denoise or clean the corrupted signals using training data comprising of both

corrupted and clean data. We demonstrated, in this dissertation, that the autoen-

coder can be used for removing signal-dependent clutter when no information

or label of the through-wall scenario is assumed to be known during the test

phase. Instead, the autoencoder is trained with a mixture of images gathered

in diverse through-wall conditions. Traditional autoencoders have been imple-

mented using back-propagation algorithms such as- gradient descent [130], con-

jugate gradient descent [131] and steepest descent [125]. However, they have

a very slow learning rate. This translates to long training times and, in some

cases, the convergence may not be guaranteed. Instead, we use an alternating

direction method of multipliers (ADMM) approach [132], where we break the

complex convex optimization problem into smaller sub-problems with closed-

form solutions. Thus the convergence is guaranteed and training times are not

very long.

We test the performance of the presented algorithm on two types of radar

images - Doppler enhanced and range enhanced frontal images. The Doppler-

enhanced frontal images of dynamic human motions are generated from simu-

lated narrowband radar data of human motions in through-wall environments

using the techniques described in [71, 72]. We consider a variety of walls- a

dielectric wall, a dielectric wall with metal reinforcements and one with air-
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gaps. The through-wall propagation phenomenology is modeled using finite-

difference time-domain (FDTD) techniques [133]. We introduce significant di-

versity in wall parameters such as dielectric constant and conductivity by in-

corporating stochasticity in the finite difference equations as suggested by [81].

This is a computationally, more efficient technique than running multiple FDTD

simulations with varying wall parameters. The second set of images are range-

enhanced frontal images captured of static humans using measurement data

gathered with Walabot, a three dimensional programmable, wideband imaging

radar [90]. During the training phase, the autoencoder is trained with a diverse

mixture of data gathered from different through-wall scenarios. In the test phase,

the network denoises the corrupted radar image without requiring any informa-

tion of the type of wall or its parameters. Both the simulation and measurement

results obtained from the autoencoder exhibit very low normalized mean square

error and high structural similarity between the denoised reconstructed images

and free space images.

5.1 Theory

Radar images deteriorate significantly due to distortions and multipath clutter

signals introduced by through-wall environments. The images may be defo-

cused, blurred, or smeared. Ghost targets may appear due to multipath. The

objective, here, is to reconstruct clean radar images resembling free space im-

ages from corrupted through-wall images. We divide our denoising problem

into two stages- training and the test stages.
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Figure 5.1: Denoising Autoencoder

5.1.1 Training Stage

A conventional denoising autoencoder shown in Fig.5.1, first corrupts the clean

input data by adding stochastic Gaussian noise, then feeds the corresponding

noisy version as input data to the next stage. In this work, we consider the

measurements in a through-wall case as our noisy/corrupted data. The main dif-

ference is the non-Gaussian nature of interference. During the training stage,M

radar images of the target are captured in free space. We vectorise each image

of size <I×J to obtain ytr ∈ <N×1 where N = I × J , is the total number of

pixels in an image. We stack the M images as columns to form a data matrix

Ytr ∈ <N×M . We repeat this exercise for the images captured in the correspond-

ing through-wall scenarios to generate Ŷ
tr

also of size <N×M . The autoencoder

has primarily two stages- encoding and the decoding. In the encoding stage,

the algorithm learns a latent/compressed representation Z ∈ <r×M , of the input

layer Ŷ
tr

as shown in

Z = φ(W1Ŷ
tr

). (5.1)

Here, φ is the mapping function which can either be linear or nonlinear (such

as sigmoid, tanh), W1 ∈ <R×N is the corresponding weight matrix and R
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is the number of nodes in the hidden layer. Since the hidden layer, Z, is the

compressed representation of the input layer, Ŷ
tr

, it always has fewer nodes

than the number of pixels (R << N ). In the decoding stage, the algorithm

maps Z back to obtain a reconstructed signal Ỹ
tr

= W2φ(W1Ŷ) through weight

matrix W2 ∈ <N×R such that the error e,

e =
∥∥∥Ytr − Ỹ

tr
∥∥∥2

2
, (5.2)

between the reconstructed images and the free space images is minimized. There-

fore the objective in the training stage is to learn weight matrices W1 and W2

so that the reconstructed images resemble free space images (instead of the cor-

rupted through-wall images). The objective function,

J(W1,W2) = min
W1,W2

∥∥∥Ytr −W2φ(W1Ŷ
tr

)
∥∥∥2

2
, (5.3)

can be solved in multiple ways - gradient descent, conjugate gradient descent,

or steepest descent. In some of these ways, the error may become insignifi-

cant when back propagated. Additionally, these algorithms have a very slow

learning rate. Instead, we present an alternating direction method of multipli-

ers (ADMM) approach [132]. Here, we introduce a simple variable separation

technique to break the complex convex optimization problem into smaller sub-

problems which have closed form solutions such that the convergence is guar-

anteed. The objective function in (5.3) is reformulated to

J(W1,W2) = min
W1,W2

∥∥Ytr −W2Z
∥∥2

2
s.t. Z = φ(W1Ŷ

tr
). (5.4)

89



Since the formulation in (5.4) is a constrained optimization problem, we relax

it using an augmented Lagrangian technique shown below

J(W1,W2,Z) = min
W1,W2,Z

∥∥Ytr −W2Z
∥∥2

2
+µT

(
Z− φ(W1Ŷ

tr
)
)

+λ
∥∥∥Z− φ(W1Ŷ

tr
)
∥∥∥2

2
.

(5.5)

The Lagrangian term µT
(

Z− φ(W1Ŷ
tr

)
)

imposes equality at every iteration;

this is too stringent a requirement in practice. We relax the equality constraint

initially and enforce it only during convergence. This assumption has been usu-

ally used in other research works such as [134, 135]. Therefore, we reformulate

the objective function as shown in

J(W1,W2,Z) = min
W1,W2,Z

∥∥Ytr −W2Z
∥∥2

2
+ λ

∥∥∥Z− φ(W1Ŷ
tr

)
∥∥∥2

2
. (5.6)

Here, λ is the regularization parameter between the proxy variable Z and un-

derlying representation φ(W1Ŷ
tr

). We divide (5.6) into a set of smaller sub

problems as follows.

Problem1:

J(W1) = min
W1

λ
∥∥∥φ−1Z−W1Ŷ

tr
∥∥∥2

2
. (5.7)

Problem2:

J(W2) = min
W2

∥∥Ytr −W2Z
∥∥2

2
. (5.8)
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Problem3:

J(Z) = min
Z

∥∥Ytr −W2Z
∥∥2

2
+ λ

∥∥∥Z− φ(W1Ŷ
tr

)
∥∥∥2

2

= min
Z

∥∥∥∥∥∥∥
 Ytr

√
λφ(W1Ŷ

tr
)

−
W2

√
λI

Z

∥∥∥∥∥∥∥
2

2

.

(5.9)

Sub problems in (5.7)-(5.9) are all simple least squares problems which already

have a closed form solution [94]. At each iteration, we update the network

weight W1, W2 and proxy variable Z, till the algorithm converges.

5.1.2 Test Stage

During test stage, P corrupted radar images are combined together to form

Ŷ
test
∈ <N×P and passed through the autoencoder to obtain Ỹ ∈ <N×P . We

hypothesize that once the network is trained, we can use weight matrices W1

and W2 to obtain a denoised form Ỹ
test

of the corrupted test data Ŷ
test

as shown

in Fig.5.2(b).

Ỹ
test

= W2φ(W1Ŷ
test

). (5.10)

Note that the presented denoising algorithm is significantly faster in generating

denoised images at test time as it involves only a simple product operation in

(5.10). This makes the algorithm suitable for real-time applications.

5.1.3 Metrics for evaluation

We evaluate the effectiveness of the clutter mitigation algorithm using two metrics-

normalized mean square error (NMSE) and structural similarity index (SSIM).
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We consider the image captured in free space as the clean/ground truth image

(Ytest). We calculate the NMSE and SSIM between the through-wall image

Ŷ
test

and ground truth image before denoising (BD). Then we repeat the ex-

ercise after denoising (AD). In the second case, the NMSE and SSIM are cal-

culated between the reconstructed/denoised image, Ỹ
test

, and the ground truth

image. The hypothesis, here, is that the NMSE and SSIM will improve after

denoising.

The NMSE is computed between Ytest and Ŷ
test

using

NMSE =

∥∥∥Ytest − Ŷ
test
∥∥∥2

2∥∥Ytest
∥∥2

2

. (5.11)

NMSE is sensitive to the energy of absolute errors of all the pixels of an image.

However, NMSE between two images may be low even if they have drastically

different structural features [136]. SSIM [137], on the other hand, is a metric

that provides information of the luminance (L), contrast (C) and structure dif-

ference (S), between the ground truth image Y test, and the test image Ŷ test. Its

value should be 1 if the images are identical. The overall measurement metric

becomes the multiplicative combination of three measures shown in

SSIM(Ŷ,Y) = [L(Ŷ,Y)]α[C(Ŷ,Y)]β[S(Ŷ,Y)]γ. (5.12)

We assume α = β = γ = 1. The expressions for L,C, S are

L(Ŷ,Y) =
2µŶ µY + C1

µ2
Ŷ

+ µ2
Y + C1

. (5.13)
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Figure 5.2: (a) During training stage, the autoencoder learns coefficients W1 and W2 from clean free space images
(Ytr) and corrupted through-wall (Ŷ

tr
) images. (b) During test phase, corrupted through-wall images (Ŷ

test
) are

denoised to obtain reconstructed images that resemble free space radar images (Ytest).

C(Ŷ,Y) =
2σŶ σY + C2

σ2
Ŷ

+ σ2
Y + C2

. (5.14)

S(Ŷ,Y) =
σŶ Y + C3

σŶ σY + C3
. (5.15)

Here, µY , µŶ , σY , σŶ and σŶ Y are the local means, standard deviations and

the co-variance for the reference Y and test images Ŷ respectively. Assuming

C3 = C2

2 , the simplified index becomes

SSIM(Ŷ,Y) =
(2µŶ µY + C1)(2σŶ Y + C2)

(µ2
Ŷ

+ µ2
Y + C1)(σ2

Ŷ
+ σ2

Y + C2)
. (5.16)

We therefore conclude that two images can be regarded as similar only when

both NMSE is low and SSIM is close to 1.
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5.2 Simulation Method

In this section we describe the simulation method to generate a large database

of Doppler enhanced frontal images of humans in diverse through-wall condi-

tions. We adopt the technique described in [71] and briefly describe its salient

features in the following subsection. We only model the through-wall propa-

gation phenomenology and do not consider multipath scattering from the ceil-

ing, ground and lateral walls. The wall propagation phenomenology, modelled

using finite difference time domain techniques (FDTD), and primitive based

models of humans are hybridized to generate Doppler-enhanced frontal radar

images. There may be considerable variations in the propagation conditions

during training and test due to variations in the wall characteristics such as its

dielectric constant and loss tangent. Modeling this diversity with independent

FDTD simulations is computationally expensive. Therefore, we extend the sim-

ulation framework discussed in [79] by incorporating stochasticity in the prop-

agation channel using the stochastic FDTD (sFDTD) technique suggested by

[81]. The sFDTD method introduces statistical variations in the electrical prop-

erties of the medium. The results of the simulations provide the mean and the

variance estimates of the time-domain electromagnetic fields at every point in

the problem space from which numerous samples of the through-wall propaga-

tion can be generated. We describe these steps in greater detail in the following

sections.
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Figure 5.3: Radar scattering model of human.

5.2.1 Radar Signal Model

We consider a radar with a single CW transmitter of frequency fc (wavelength

λc). The receiver consists of a P×Q uniform planar array along theX−Y plane

with element spacing λc/2. We use motion capture data for realistically mod-

eling complex human animation. We interpolate the data from the video frame

rate to the radar sampling frequency. The data provides time-varying three-

dimensional positions of B markers distributed over the entire human body -

head, torso, arms, shoulders, and legs as shown in Fig.5.3. We assume that

these markers correspond to point scatterers each of reflectivity ab and located

at spherical coordinate positions (rb, θb, φb) where θb is the elevation from the

XZ plane and φb is the azimuth with respect to the positive Z axis on the hu-

man body. Each body part moves with a Doppler frequency fDb
. The baseband,

digitized radar data at each (p, q)th element is given by

Xp,q,n =
B∑
b=1

ab[n]e−j
2π
λc
||~rb[n]−~rp,q||22. (5.17)
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where n denotes the time sample and ~rp,q is the position of the radar element.

The data are processed with discrete short time Fourier transform across the

time-domain using a sliding time window centered around τ and 2D Fourier

beamforming across the array to obtain a time varying three-dimensional radar

cube in terms of azimuth, elevation and Doppler, χτφ,θ,fD , as shown in

χτφ,θ,fD = F3DXp,q,n =
B∑
b=1

abH3D [φ− φb(τ), θ − θb(τ), fD − fDb
(τ)] .

(5.18)

Here, H3D[·] is the three-dimensional point spread function across the three

domains and F3D indicates the three-dimensional Fourier operator. From the

radar cube, we identify peak scatterers of strength aτm[fD] located at (φm, θm) at

every Doppler bin fD. We generate Doppler enhanced frontal images χτφ,θ for

every τ by convolving the peak scatterers with a two-dimensional point spread

function, H2D[·] as shown in

χτφ,θ =
∑
fD

aτm(fD)H2D [φ− φm, θ − θm] . (5.19)

The incorporation of the additional Doppler dimension enables us to resolve

multiple scatterers of the human body along two spatial dimensions thus alle-

viating the need for larger arrays required for successful imaging. The radar

signal model parameters that we use in this work are provided in Table 5.1.
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Table 5.1: Simulated Radar Parameters

Radar Parameters Values
Radar Type Narrowband

Carrier frequency (fc) 7.5GHz

Sampling frequency (fs) 1000Hz

Integration time (T ) 0.8s

Dwell time or short time (tD) 0.1s

Maximum Doppler (fDmax) ±500Hz

Doppler resolution (∆fD) 10Hz

Number of antenna elements (P ×Q) 10× 10

Azimuth Beamwidth (∆φazi) 10
◦

Azimuth Beamwidth (∆θele) 10
◦

Field of View (φazi) −90
◦
to 90

◦

Field of View (θazi) −90
◦
to 90

◦

5.2.2 Stochastic Model of Through-Wall Propagation

The formulation discussed above describes the radar images generated in free

space conditions. In this section, we use through-wall propagation phenomenol-

ogy described in Chapter 2, Section 2.3.1.2 to simulate human radar returns.

As shown in Fig.5.4, we consider a 2D simulation space extending from -1m

to 1m and 0m to 4m along the X and Z directions respectively (assuming the

wall is invariant along Y height axis). The 2D simulation framework is chosen

to reduce the computational complexity of the problem and because most walls

show homogeneity along the height. In order to correspond to the radar signal

model discussed earlier, we consider a uniform 10 element linear antenna array

whose elements are spaced half wavelength apart. We independently simulate

the excitation from each element of the array, located at ~ρp, with a narrowband

sinusoidal signal at fc. The simulation space is bounded by a perfectly matched

layer and divided into spatial grids of λc/10 size. We considered three dif-

ferent wall configurations - a homogeneous dielectric wall (Fig.5.4(a)), a wall
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Figure 5.4: Room geometry in through-wall scenario (a) Dielectric (b) Reinforced wall and (c) Wall with air-gaps

reinforced with metal rods (Fig.5.4(b)), and a wall with air gaps (Fig.5.4(c)).

Each wall type is simulated independently. The dimensions of each wall is

2m x 30cm (X: -1m to 1m, Z: 1m to 1.3m). In all three cases, stochastic

variations of 10% standard deviation are introduced in the relative permittivity

εr = 4, and conductivity σc = 0.001S/m, of each grid point in the wall. There-

fore, even the single layer dielectric wall is not truly homogeneous. This is

done to mirror real world conditions. For every point in space, ~ρb, and at ev-

ery time instant n, the sFDTD simulation gives the mean time-domain electric

field µE[~ρb, ~ρp, n] and its standard deviation σE[~ρb, ~ρp, n]. We use the Gaussian

stochastic model to generate 200 samples (η = 1 · · · 200) of time-domain elec-

tric field values E[~ρb, ~ρp, n, η) ∼ N (µE, σ
2
E]. The E[~ρb, ~ρp, n, η] is fast Fourier

transformed to obtain the corresponding frequency domain wall transfer func-

tion Hwall(~ρb, ~ρp, η) at 7.5GHz.
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5.2.3 Modeling of electromagnetic radar scatter from dynamic humans in through-wall

scenarios

We integrate the free space radar signal model with the through-wall propaga-

tion based on [43, 79]. We considered a scenario where the human is moving be-

hind a wall before a radar. Since our FDTD simulation spatial extent is limited,

we removed translational motion of the human and only retained the dynamics

of the swinging arms and legs. Therefore, the time-domain scattered returns at

each (p, q) antenna element is obtained by hybridizing Hwall with the human

scattering center model as shown in

Xp,q,n[η] =
B∑
b=1

abγ2D→3D(p, q, b) (Hwall[~ρb[n], ~ρp, η])2 . (5.20)

Each point scatterer on the human is projected from its three-dimensional po-

sition ~rb to its two-dimensional counterpart ~ρb on the X − Z plane. The term

Hwall[~ρb, ~ρq, η] models the propagation from the source ~ρp to ~ρb and is generated

from a stochastic realization (η) of the full wave electromagnetic solver. The

scaling factor γ2D→3D, given by (5.21), adjusts the phase for modeling three-

dimensional physics from the two-dimensional simulation as described in [43].

γ2D→3D(p, q, b) = e
−j2π
λ [‖~rb[n]−~rp,q‖2−‖~ρb[n]−~ρp‖2]. (5.21)
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5.3 Simulation Results

We first consider a single stride of a human walking motion from Sony Com-

puter Entertainment America. The duration of the motion is 0.8s which corre-

sponds to one complete human stride. The human is walking away from the

radar at an aspect angle of 180◦. We generate the Doppler-enhanced frontal

images for free space and the three wall types.

5.3.1 Doppler enhanced frontal imaging of dynamic humans in through-wall scenarios

The Doppler enhanced frontal images account for all the electromagnetic phe-

nomenology introduced by the through-wall propagation conditions including

attenuation, ringing and multipath. To demonstrate the validity of our claim,

we show the magnitude response for the four scenarios at a carrier frequency

of 7.5 GHz and the corresponding simulated Doppler enhanced frontal image

of a single frame of a walking human, at a radar-target aspect angle of 180◦, in

Fig.5.5. Some comments regarding the wall-target interaction phenomenology

on the frontal images:

Free Space: Figure5.5(a) shows that the magnitude response of the electric

field decays as the distance from the source increases. The phase response in

Fig.5.5(e) displays the circular wave-fronts emanating from an infinitely long

line source excitation. Due to the undistorted phase response, we get the high-

est quality frontal images in the free space scenario. We can clearly discern

both arms, legs and head of the human in the corresponding Doppler enhanced
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Figure 5.5: (a)-(b)Magnitude response, (e)-(h) phase response at 7.5 GHz in freespace, through dielectric wall,
reinforced dielectric wall, and dielectric wall with air-gaps respectively. (i)-(l) Corresponding simulated Doppler
enhanced frontal image of a walking human

frontal image shown in Fig.5.5(i). The image falls within the±30◦ field-of-view

of the radar along elevation and azimuth. There is some smearing near the legs

due to the limited resolution along azimuth and elevation of the array.

Dielectric Wall: The propagation of a signal through a homogeneous dielectric

wall undergoes a two-way attenuation of approximately 12dB when compared

to free space Fig.5.5(b). Hence, the strength of some of the peak scatterers in the

frontal image Fig.5.5(f), become too weak to be visible on the same dynamic

scale as that of free space case. This image clearly demonstrates the effect of

through-wall attenuation on the images.
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Reinforced Wall: Figure5.5(c) and (g) shows that the inhomogeneity inside

the wall causes multiple scattering that interferes destructively in some regions

beyond the wall. As a result, the radar frontal images are significantly distorted.

Additionally, positions of few scatterers get displaced along the azimuth direc-

tion due to refraction. Some of the point scatterers are not visible at all because

these lie at regions of destructive interference shown in Fig.5.5(k).

Wall with Air Gaps: Finally, we see that the wall response is most severe in

the case of the wall with air-gaps as visible in Fig.5.5(d) and (h). The phase

response in Fig.5.5(h), shows that the multipath can interfere constructively or

destructively in some regions leading to significant distortions. Therefore, the

most significantly distorted frontal images are from this case, as can be seen in

Fig.5.5(l).

5.3.2 Results from denoising cluttered images

We selected 30 frames of a human subject walking away from the radar span-

ning a duration of 0.8s, as shown in Fig.5.6. The training data consists of images

corresponding to different motion states within a stride, as shown in the stick

figure models in Fig.5.6. The size of each image is [92 × 92]. Corresponding

to each of these frames, we generated 200 distinct through-wall radar images

to capture statistical variations in the wall parameters. Each image is then vec-

torized to a column vector of size [8464 × 1], for final processing. Of the total

set of 6000 images for each wall type, 80% images are used for training the

autoencoder network and the remaining for the test.
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Figure 5.6: Simulated Doppler enhanced frontal images over one walking stride of human motion, and the
corresponding stick figures obtained using ground truth motion capture data.

The results are obtained by optimizing the number of nodes (R) in the hid-

den layer and the mapping function connecting the input and the hidden layer.

We fixed the hidden layer dimension of the autoencoder network to be 500 and

the mapping to be linear between input and the hidden layer. The choice of

these parameters is presented in the discussion section 5.5. During training, the

weight matrices W1 and W2 each of size [500× 8464] and [8464× 500] respec-

tively are first randomly initialized. The weights are updated over successive

iterations, as discussed in the previous section. Since we give equal importance

to both encoding and decoding stage, the regularization parameter (λ) is chosen

to be 1. We have shown the convergence of the objective function with the iter-

ations of the learning algorithm. Figure 5.7 confirms that the convergence has

reached. Once learned, the weights are used for the test.

Tables 5.2−5.3 show the results for the metrics, SSIM and NMSE, as a func-

tion of number of distinct frames of the human walking motion. We compare
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Figure 5.7: Convergence curve of the denoising algorithm.

the metrics obtained from images generated before denoising (BD) with those

obtained after denoising (AD). To give readers a better understanding of the

generality of the solution, we have studied the sensitivity of the performance

of the algorithm to different wall types during training and test scenarios. We

considered the following three training scenarios.

Case 1: Train and test on data from same wall:

First, we consider the scenario where the autoencoder is trained with data from

a specific wall configuration and then subsequently tested on images generated

from the same wall configuration. The training data set size, in this case, is

[8464 × 4800]. Note that even in the same wall case, there is diversity in the

training and test data due to the statistical variations in the wall parameters as

well as motion characteristics. Before denoising, the dielectric wall case has

the lowest error when compared to the reinforced and air-gaps walls. This is

because the quality of the radar images is a function of the phase and ampli-

tude distortions introduced by the walls to the radar signals. Therefore, based
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Table 5.2: Denoising results between clean and corrupted Doppler enhanced frontal images for different through-wall
conditions.SSIM:between corrupted and free space image before denoising (BD) and SSIM :between reconstructed
and free space image after denoising (AD)

Wall Scenario Denoising Metric
(SSIM) Number of Frames

1 5 10 20 30
Train and test on

same wall (Case 1) Dielectric BD 0.09 0.55 0.63 0.67 0.64

AD 0.43 0.87 0.90 0.89 0.86
Reinforced BD 0.05 0.24 0.46 0.55 0.47

AD 0.43 0.81 0.87 0.84 0.80
Wall With Air-gaps BD 0.03 0.01 0.34 0.51 0.43

AD 0.42 0.82 0.83 0.82 0.77
Train and test on different walls (Case 2) BD 0.05 0.24 0.46 0.55 0.46

AD 0.41 0.43 0.55 0.08 0.01
Train on multiple walls (Case 3) BD 0.04 0.26 0.43 0.52 0.45

AD 0.19 0.81 0.84 0.83 0.78

on the magnitude and phase responses shown in Fig.5.5(c) and (d), we observe

the results deteriorate most in the case of the wall with air-gaps. The error be-

tween reconstructed and the free space images drop significantly for all wall

types after passing through the denoising network. We varied the number of

frames from 1 to 30 to increase the diversity in the human motions. Since this

is a continuous motion, there may be some slight correlation between images

obtained from consecutive frames. However, this is not very evident from vi-

sual inspection of the images corresponding to the frames as seen in Fig.5.6. So,

we map the group correlation index across the multiple frames as we increase

the diversity of the training data in Fig.5.8. The figure shows that the group

correlation increases until it reaches a plateau of about 10 frames. Hence, the

denoising performance seems to improve when we increase from a single frame

to 10 number of frames as the training data captures the diversity of motions in

the Tables 5.2−5.3. Beyond this, the performance of the denoising algorithm
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Table 5.3: Denoising results between clean and corrupted Doppler enhanced frontal images for different through-
wall conditions.NMSE:between corrupted and free space image before denoising (BD) and NMSE :between
reconstructed and free space image after denoising (AD)

Wall Scenario Denoising Metric
(NMSE) Number of Frames

1 5 10 20 30
Train and test on

same wall (Case 1) Dielectric BD 3.60 3.50 3.18 3.49 3.39

AD 1.05 0.85 0.99 0.92 1.56
Reinforced BD 5.71 5.91 5.57 5.60 5.01

AD 1.60 1.09 1.08 1.16 1.36
Wall With Air-gaps BD 4.42 4.01 3.50 3.25 2.86

AD 1.14 1.18 1.36 1.32 1.32
Train on multiple walls (Case 3) BD 5.01 4.49 4.07 4.13 3.78

AD 0.71 1.16 1.26 1.60 1.58

Figure 5.8: Group correlation across multiple frames

slightly deteriorates due to the possible decorrelation between test and training

data. However, the deterioration in the performance is very slight. The perfor-

mance indicates that this algorithm is specifically suited for imaging continuous

and periodic motions such as walking. Also, note that NMSE and SSIM do not

behave in an identical manner for all the cases as they indicate different aspects

of similarity of images. In practice, this case seems to be limited since in real-

world scenarios. We may not know the type of wall available during the test

phase. Therefore, we consider a significantly more challenging scenario where

there is no information of the type of wall during the test phase.
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Case 2: Train using data from a single wall type and test using data from a

different wall type:

Next, we analyze the performance of the algorithms when the network is trained

on images captured from a dielectric wall and tested with images captured from

a reinforced wall type. The resulting denoising performance reported in Table

5.2 deteriorates considerably as the number of frames increases. The reason for

the poor performance is because the nature of the clutter in the dielectric case is

quite different from that of the reinforced wall case. The algorithm is unable to

denoise the clutter due to the lack of diversity in the training data. Henceforth,

we do not report results for this case.

Case 3: Train using data from multiple types of walls and test on data from

a single wall:

To overcome the limitation of the previous case, we train the network on im-

ages captured from all three through-wall scenarios resulting in total training

data set size of [8464 × 14400]. Then, the data from any of these walls is ran-

domly chosen for the test. This is a significantly more challenging scenario

since no information about the type of wall is available during the test phase.

Note that the images used in the test phase have not been used during training.

Our algorithm is specifically suited for problems dealing with a great deal of

diversity in the target and channel conditions (different wall scenarios). The

results show very good performance (NMSE and SSIM) comparable to that of

the same wall scenarios. Thus, the performance of the algorithms depends on

the diversity of data provided while training.
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Figure 5.9: Simulated Doppler enhanced frontal images over one walking stride of human motion for different
aspect angles

5.3.3 Impact of radar-target aspect angle

In order to understand the generality of the presented denoising solution, we

trained our autoencoder network with human radar images captured at different

aspect angles with respect to radar line-of-sight conditions. We analyzed the

performance of our algorithm for four aspect angles- 0◦, 45◦, 90◦, 180◦. The

time-varying Doppler-enhanced frontal images generated in free space for 0◦

and 90◦ are shown in Fig.5.9. These can be compared to the frontal images for

180◦ that were shown earlier in Fig.5.6. Here 0◦ aspect angle means the person

is walking towards the radar and 180◦ means the person is walking away from

the radar. Similarly 90◦ corresponds to the motion along the tangential direc-

tion to the radar. We studied the efficacy of the algorithm for reinforced wall

which, as mentioned earlier, is one of the most complex walls. We tested the per-
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Table 5.4: Denoising results between clean and corrupted images (captured behind reinforced wall) for different
aspect angles. SSIM,NMSE:between corrupted and free space image before denoising (BD) and SSIM,NMSE:
between reconstructed and free space image after denoising (AD)

Wall Scenario
(Reinforced) Denoising Metric

SSIM NMSE
Aspect Angle 0◦ BD 0.05 5.64

AD 0.64 1.16
45◦ BD 0.36 4.01

AD 0.73 1.02
90◦ BD 0.01 4.33

AD 0.60 1.67
180◦ BD 0.46 5.01

AD 0.80 1.23
0◦, 45◦, 90◦, 180◦ BD 0.41 4.60

AD 0.71 1.44

formance of the denoising autoencoder on two scenarios: In the first scenario,

both the training and test data are gathered at the same aspect angle (identical

training and test scenario); In the second scenario, we used images captured at

multiple different aspect angles for both training and testing the autoencoder.

Therefore, during test, the algorithm is not provided information of the aspect

angle of the data. We used both NMSE and SSIM to measure the performance

and report the results in Table 5.4. We observe highest error when the algorithm

is trained with data captured at 90◦ aspect angle that is when the human walks

in a direction tangential to the radar. This is most likely because of the inherent

distortions in these frontal images due to the limited separation of point scatter-

ers on the subject along the azimuth direction which can be clearly seen from

Fig.5.9. Likewise, the Dopplers of the different point scatterers on the human

body are not well resolved due to the tangential motion. The results reported

for all the aspect angles show significant improvement after denoising. When

we consider data from multiple aspect angles, the denoising significantly helps
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Figure 5.10: Simulated Doppler enhanced frontal images over a crouch to run motion of a human and the
corresponding stick figures obtained using ground truth motion capture data

in reconstructing images close to free space images even when the algorithm

is not provided any information of the exact aspect angle at which a person is

walking. Therefore we can infer that the autoencoder is specifically suited for

problems dealing with a great deal of diversity in the target and channel condi-

tions. It can significantly denoise (i) images captured in similar and dissimilar-

wall conditions as well as (ii) images captured at different aspect angles of the

target provided there is sufficient diversity across training data.

5.3.4 Aperiodic human crouch to run motion

We performed additional simulations to evaluate the performance of algorithm

when human undergoes a non-periodic motion - when a human transitions from

a crouch to a run towards the radar. Figure 5.10 shows the micro-Doppler sig-

nature of this motion. Since our FDTD simulation spatial extent is limited, we

removed translational motion of the human and only retained the dynamics of
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the swinging arms and legs. Here the torso velocity is mostly around 0 since

there is no translational motion of the human. We considered 40 consecutive

frames of a human subject over a duration of 1.2s. The transition between the

motion states can be clearly seen from the frontal images and their stick fig-

ure counterparts. This motion is considerably more challenging than the simple

human walking motion. As the number of frames increase, there is enough

diversity in the motion which is also reflected in the group correlation index

across multiple frames shown in Fig.5.11(a). We tested the performance of our

algorithm on data set captured behind a reinforced wall (a complex wall). Fig-

ure 5.11(b) shows the denoising performance of the our denoising algorithm

on the complex data set. The figure shows that the denoising algorithm (using

the linear mapping function) results in significant improvement in the SSIM af-

ter denoising until approximately 15 frames. Beyond this, the performance of

the denoising algorithm deteriorates due to the possible decorrelation between

test and training data which is also reflected in Fig.5.11(a). Thus we conclude

that the performance depends on how well the algorithm is trained to handle

diversity in the test data.

5.4 Measurement Results

5.4.1 Measurement Data Collection

In this section, we evaluate the performance of our algorithm using wideband

measurement data captured in both free space and through-wall conditions. The
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Figure 5.11: Simulated human (a) Group correlation across multiple frames and (b) SSIM variation for simulation
results with respect to number of frames

data is collected using Walabot Pro [90], a wideband(3.3-10.3GHz) 3D pro-

grammable RF imaging sensor. Walabot is a low power uncalibrated sensor

with limited range in through-wall scenarios. It uses a 4 × 4 antenna array to

illuminate the area in front of it to capture the back-scattered signals. The hard-

ware radar parameters are listed in Table 5.5. The range enhanced images are

obtained in a manner similar to (5.19) by replacing the Doppler dimension with

the range dimension. Here, the peak scatterers across all the range gates are

coherently summed to obtain the frontal images of the targets. These steps are

performed within the inbuilt processor in the sensor and we are provided with

output range-enhanced images. The assumption here, is that the targets are still

or slow moving.

Our clean measurement data consist of range enhanced frontal images of

a human gathered in line-of-sight conditions in an environment mostly free

of clutter. The through-wall measurement data comprise of images captured

through a 2cm thick glass wall and a 3cm thick wooden wall. The subject

stands in front of the radar at a standoff distance of 2m carrying two corner re-
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Figure 5.12: (a) Measurement setup in free space and measured range enhanced frontal image of a human subject
in (b) free space, (c),(d) behind a glass wall, wood wall respectively , (e),(f) Denoised images in through wall
scenarios-glass Wall, wood wall respectively using the presented denoising algorithm.

flectors covered with aluminum tape to enhance the reflectivity from the hands

as shown in Fig5.12(a). Therefore, the target is an extended target with mul-

tiple point scatterers. The experiments are performed on 4 human subjects of

different heights and girth at different orientations (−45◦ to +45◦) with respect

to the radar but always facing the radar. For each of these subjects, we captured

75 measurements resulting in a total of 300 images of which 80% are used for

training and remaining for test. An example of the resultant radar image in free

space is shown in Fig.5.12(b) where we can clearly discern the torso, legs and

two arms of the human. Radar images are corrupted when the measurements
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Table 5.5: Parameters of Real Radar Setup. *- values derived from available information

Radar Parameters Values
Radar Type Broadband
Bandwidth 3.3GHz − 10.3GHz

Maximum Range (Rmax) 10m*
Range resolution (∆r) 0.2m*

ADC 8 bit

Number of antenna elements (P ×Q) 4× 4

Azimuth Beamwidth (∆φazi) 25
◦
*

Azimuth Beamwidth (∆θele) 25
◦
*

Field of View (φazi) −90
◦
to 90

◦
*

Field of View (θazi) −90
◦
to 90

◦
*

are gathered under different through-wall conditions. Some examples of the

distortions are presented in Fig.5.12. Figure 5.12(c)-(d) correspond to images

in through-glass wall and through-wood wall conditions respectively. These im-

ages are considerably distorted due to the complex interaction between the wall

and the target.

Each image of size [91 × 37] is vectorised to obtain a [3367 × 1] vector.

Then all images are clubbed together to form a training data matrix of size

[3367× 240] and test data matrix of size [3367× 60]. Once trained, the weight

matrices W1 and W2 are used to denoise the corrupted test images using the

equation (5.10). Analogous to simulations, we examine the variation of denois-

ing performance for the different number of nodes in the hidden layer, for differ-

ent mapping functions (linear, non-linear- tanh and sigmoid) and for different

proportions of training to test data.
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5.4.2 Measurement Results and Analyses

We tested the performance of the denoising autoencoder for same wall and dif-

ferent wall scenarios. In the same wall scenario, both the training and test data

are gathered from the same type of wall. In the different wall scenario, data

from multiple walls are used for training the autoencoder which is subsequently

used for denoising images from any of the two walls. The reconstruction results

are presented as a function of percentage of training data to test data in Table

5.6. These results have been obtained using an autoencoder where the hidden

layer has 1500 nodes and the mapping function is sigmoid. The choice of these

parameters are discussed in subsequent sections. The table shows SSIM and

NMSE between the denoised radar images in through-wall and corresponding

radar image gathered in free space conditions. We compare the metrics before

denoising (BD) with those after denoising (AD). We observe that there is sig-

nificant improvement in SSIM and reduction of NMSE after denoising. The

performance improves as the percentage of training to test data increases for

both the same wall and for different wall scenarios. In other words, the perfor-

mance during test relies on adequate training data. The error for the different

wall scenario is only slightly higher than the same wall scenario. This is the

scenario when the test algorithm has no knowledge of the wall scenario. Note

that in the case of the wideband measurements, we have not presented the result

as a function of the number of frames. This is because, the targets are static and

each measurement is independent with no correlation between them.
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Table 5.6: Denoising results between clean and corrupted measurement images of real humans for different through-
wall conditions under varying percentage of training data. NMSE, SSIM :between corrupted and free space image
before denoising (BD) and NMSE,SSIM: between reconstructed and free space image after denoising (AD)

Wall Scenario Denoising Metric
SSIM

(% of Training Data)
NMSE

(% of Training Data)
20 40 60 80 20 40 60 80

Train and test on same wall Glass Wall BD 0.20 0.20 0.22 0.21 36.09 38.47 33.52 38.70
AD 0.53 0.70 0.88 0.97 7.81 5.10 4.68 3.69

Wood Wall BD 0.22 0.22 0.23 0.23 28.21 29.04 27.51 33.76
AD 0.50 0.55 0.82 0.91 7.59 7.10 4.59 4.24

Train on multiple walls BD 0.23 0.22 0.23 0.22 29.00 28.63 28.43 29.49
AD 0.46 0.59 0.70 0.89 8.40 7.39 6.19 4.97

5.5 Discussion on Results

5.5.1 Computational Complexity Evaluation

The real-time performance of the algorithm relies on the test time and the test

memory rather than training time. During test, we perform matrix multiplica-

tion operations of the trained weights W1 and W2 with test image Ŷ
test

. The

sizes of the weight matrices and the image matrix are R×N , N ×R and N × 1

respectively, where N denotes the number of pixels in the image and R denotes

the number of hidden nodes in the autoencoder such that the number of nodes is

always well below the number of pixels. The computational complexity there-

fore is O(RN). We ran our algorithm on Matlab 2015b, where all the variables

were stored as 64 bit floats, with an Intel(R) Core(TM) i7-5500 processor run-

ning at 2.40 GHz. We report the test and training times of our algorithms as a

function of the number of nodes of the hidden layers in Fig.5.13. Both the train-

ing and test times are higher when R is greater. The test time is significantly

low even for the highest number of hidden nodes (1500). The computational
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Figure 5.13: Computational time as a function of the number of nodes in the hidden layer for (left y-axis) training
phase (right y-axis) test phase

memory in all of these cases was less than 500MB. Therefore, these test opera-

tions can be carried out in easily available processors such as Raspberry PI 3+

(with a 1GB RAM and 1.4GHz clock speed).

5.5.2 Diversity of training data

The training data must be sufficiently large to handle the diversity of target

conditions, channel conditions and any labeling errors between free space and

through-wall images.

Diversity of target data: In our work, our autoencoder has been trained to

handle the diversity in the size, shape, and orientation or aspect angle of the

target with respect to the radar. In the case of dynamic motions, the correlation

between consecutive frames facilitated in improving the denoising performance.

Diversity of channel data: Next, the approach does not require the knowledge

of the exact wall conditions or analytical framework during the test phase. In-
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stead, the algorithm was capable of denoising images obtained from diverse

through-wall conditions.

Labelling errors between free-space and through-wall images: Finally, in

practice, it may be nearly impossible to gather correlated images in free space

and through-wall conditions, especially for dynamic targets. For example, it

may not be possible to replicate human motions in two different scenarios.

Therefore, the algorithm must tolerate some degree of diversity in the motion

characteristics during test and training phases. A sensitivity analysis of mis-

match/labeling error between clean (free space) and the corrupted (through-

wall) training images is not considered in this work. Generally, in machine

learning scenarios, these algorithms are quite robust to reasonable random er-

rors in the training set arising due to incorrectly labeled data. However, the al-

gorithms are less robust to systematic errors when the samples are consistently

incorrectly labeled.

5.5.3 Hyper-parameter Selection

We optimized the number of nodes in the hidden layer and mapping functions

to obtain the results presented in the previous sections. First, we discuss the au-

toencoder used on the simulation data. We simulated narrowband time-domain

returns at a carrier frequency of 7.5GHz with the gains of the antennas to be

10dBi, and the transmitted power at +30dBm. As a result, the maximum re-

ceived signal strength from the human subject (at R = 2.5m) is -57dBm. There-

fore, all the pixel values in the simulated images are negative. Figure 5.14a
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Figure 5.14: SSIM variation for simulation results with respect to (a) number of frames, (b) number of nodes in the
hidden layer for mapping functions-linear, tanh and sigmoid

shows the performance for different mappings- linear, tanh, sigmoid - as a func-

tion of the number of frames. We observe that the linear and tanh mapping

outperform the results obtained using sigmoid mapping functions. This is be-

cause both sigmoid and hyperbolic tangent (tanh) functions - are monotonically

increasing functions that asymptote at ±∞. However, the tanh function is sym-

metric about the origin and produces outputs values between [-1 1] while sig-

moid function outputs are always positive [0 1]. The sigmoid mapping function

is thus not suited to handle the negative signal strength in the radar images due

to its asymptotic behavior. The linear mapping function is best suited for this

case. Our studies also showed that using similar mapping functions in the en-

coder and decoder results in better performances when compared to the use of

different mapping functions. Figure 5.14(b), show the variation of SSIM before

and after denoising as a function of the number of nodes in the hidden layer. We

observe that the performance converges when the number of nodes is approxi-

mately 500.
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Next, we discuss the autoencoder used on the measurement data of real hu-

mans in both line-of-sight and through-wall conditions. The measurement data

are collected using the Walabot that has an ADC of 8 bits. The digitized data

are calibrated to a voltage scale from 0 to 5V. In the radar images, the pixel

values are converted to the logarithmic scale and hence consist of both nega-

tive and positive values. Due to the dynamic range of the pixel energy values,

the sigmoid function is now able to handle the denoising, and we get excellent

results in Fig.5.15. The results are in perfect accordance with our previous hy-

pothesis that the performance of these activation functions is sensitive to the

signal strength and dynamic range of the pixels in the radar images. In fact, the

non-linear mapping functions are slightly superior to the linear mapping func-

tion. The linear mapping function is able to handle the non-linearity in the wall

response since the images are inherently sparse. The SSIM varies as a function

of the number of nodes in the hidden layer for different mapping functions in

Fig. 5.15. The SSIM improves and tends towards 1 as we increase the number

of nodes in the hidden layer to 1500.

5.6 Summary

We demonstrate the efficacy of the denoising autoencoder network at mitigating

the distortions and clutter introduced by wall propagation on radar images of

humans. The presented approach requires neither prior information of the wall

characteristics nor any kind of analytic framework to describe the wall propaga-

tion effects. Instead, the algorithm relies on the availability of a huge training
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Figure 5.15: SSIM variation for measurement results with respect to the number of nodes in the hidden layer for
mapping functions-linear, tanh and sigmoid for human subjects

data set comprising of distorted radar images captured in diverse through-wall

scenarios and the corresponding clean images in line-of-sight conditions. Once

trained, the algorithm is capable of mitigating through-wall effects of similar

walls though not necessarily identical walls. This capability makes this ap-

proach suitable for tracking humans under diverse propagation environments.

We evaluated the performance of the algorithm on both static and dynamic

targets. The radar images of dynamic humans were simulated using Doppler-

enhanced array processing while the images of the static humans were gener-

ated from measurement data using range-enhanced array processing. Before

denoising, the images were considerably distorted by through-wall propagation

effects. Our algorithm showed that after denoising, the images were structurally

similar to the free space images with the low mean square errors.
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Chapter 6

Conclusion and Future Work

6.1 Contributions and Impact

The contributions of the dissertation are:

6.1.1 Public database of radar micro-Doppler data

An important contribution of my thesis is the release of a highly curated data

set of simulated and measured human micro-Dopplers comprising:

• Single human walking scenarios of varying gaits, heights and velocities

• Multiple (two, three and four) humans walking together

• Humans performing different types of periodic motions in line-of-sight

conditions

• Humans performing different types of periodic motions in through-wall

conditions
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Machine learning techniques have made major breakthroughs in various appli-

cations, and new algorithms appear every day. The performances of these algo-

rithms are tied to the volume and diversity of high-quality training data. Unlike

the vision and image processing and even the medical communities, there are

currently a limited number of open databases of radar data. We hope that shar-

ing our radar data will be useful for benchmarking future algorithms and reduce

the expense and labor involved in data acquisition by other researchers.

6.1.2 Representation of radar micro-Dopplers using customized dictionaries obtained

from data-driven dictionary learning

We demonstrated that highly sparse representations of micro-Doppler data can

be generated based on data-driven dictionary learning approaches. Unlike data

independent transforms such as Fourier and wavelets, these dictionaries are fine-

tuned to data characteristics resulting in highly discriminative representations.

These dictionaries can be used for a variety of applications similarly to those

obtained from other transforms. We examined the advantages of data-driven

dictionaries compared to traditional dictionaries for two applications in my the-

sis.

6.1.2.1 Single channel source separation of radar micro-Dopplers for multiple target detection

We demonstrated that the customized dictionaries can be exploited for detecting

multiple dynamic targets in the propagation channel. The dictionary learning

algorithm facilitated the resolving of multiple movers based on their sparse rep-

123



resentations using a low complexity single channel CW radar. The algorithm

can be extended to outdoor automotive scenarios where the propagation envi-

ronment might comprise of vehicles, pedestrians, and animals whose returns

must be separated before they are individually classified. Similarly, in inverse

synthetic aperture radar (ISAR) imaging involving range-Doppler processing,

micro-motions of components of a target (such as the wheels of an automobile)

may give rise to distortions that significantly distort the ISAR images. Here,

single channel source separation of micro-Dopplers may enable the mitigation

of such distortions.

6.1.2.2 Classification of radar targets using dictionary learning

We found that the data-driven dictionaries outperformed the data independent

dictionaries in terms of their classification accuracy and achieved near real-time

radar data processing when the test and training micro-Doppler radar data were

gathered at different carrier frequencies. This is because these sparse represen-

tations of the data are highly discriminative and characterize the target motion

as opposed to the sensor parameters. Hence, these types of dictionaries can

be used to support reconfigurable radar hardware where sensor parameters are

changed during deployment in response to unforeseen channel conditions.

6.1.3 Method to simulate large volumes of radar micro-Dopplers in indoor conditions

We have presented a computationally efficient method to model radar micro-

Dopplers in indoor conditions by integrating the stochastic finite-difference
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time-domain (sFDTD) technique with the primitive based scattering center model

of human radar returns. We introduced significant diversity in the electrical pa-

rameters of static indoor scatterers by incorporating stochasticity in a single

sFDTD simulation instead of running multiple FDTD simulations.

6.1.4 Clutter mitigation in radar images using denoising autoencoders

We demonstrated a denoising autoencoder network for mitigating through-wall

propagation artifacts - such as attenuation, defocussing and multipath clutter -

on micro-Doppler based radar images. The algorithm does not require analytic

models to represent these complex wall behaviors or prior information of the

wall parameters or room geometry. Instead, the algorithm relies on a large vol-

ume of training data that are diverse in terms of target conditions (the diversity

in the size, shape and orientation or aspect angle of the target with respect to the

radar) and channel conditions. The denoising autoencoder algorithm has been

implemented using an alternating direction method of multipliers approach to

ensure convergence and fast training times. Though the method was demon-

strated for indoor through-wall images, we hypothesize that these techniques

can be used to mitigate distortions in other types of radar images where large

training databases are available (such as the automotive radar scenarios) since

the method does not rely on physics-based modeling and instead on data driven

learning based inferences.

125



6.2 Future Research Avenues

Some future avenues for research on the micro-Doppler radar are provided be-

low.

6.2.1 Diversity in radar systems, algorithms, and metrics

Radar micro-Doppler data are currently gathered with a variety of hardware

platforms both in research labs and with commercial sensors. There are consid-

erable variations in the system parameters such as carrier frequency, transmit-

ted power, waveform, and polarization. The hardware is supported by signifi-

cantly different signal processing and machine learning-based algorithms, each

fine-tuned for achieving specific objectives. Unlike other radar systems, micro-

Doppler radar hardware and software have not been uniformly benchmarked

against a common data set. In fact, there are currently no common metrics for

evaluating the system performance for micro-Doppler based sensing of humans.

It would, therefore, be desirable to derive the radar operating characteristics

(ROC) curves - the probability of detection and false alarm of human sensing

based on micro-Doppler data.

6.2.2 Dictionary learning on higher-order data

We presented an approach to detect a limited number of dynamic movers based

on the sparse representations of their micro-Dopplers. However, when the

number of target classes becomes very large, the discriminativeness of dictio-
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naries gathered from Doppler-only data decreases. It would be interesting to

investigate the dictionary learning framework in conjunction with higher-order

radar data which include range-Doppler ambiguity maps, Doppler-direction-of-

arrival (DOA) ambiguity maps, and three-dimensional radar data cubes (range,

Doppler and DOA).

6.2.3 RF Imaging on passive radar data

Micro-Doppler radars have been observed with both active and passive radar

sensors. Owing to the sudden rise in transmitters of opportunity, passive sens-

ing has attracted great attention for indoor tracking and monitoring applications.

Passive sensing leads to low power consumption and lighter construction due

to its receive only nature. However, there is very limited research into imag-

ing targets using passive signals. Interesting future research direction would be

to investigate radar image of indoor movers using passive radar sensing tech-

niques.
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learning of micro-doppler features for aided and unaided gait recogni-

tion,” in Radar Conference (RadarConf), 2017 IEEE. IEEE, 2017, pp.

1125–1130.

[25] M. S. Seyfioğlu, A. M. Özbayoğlu, and S. Z. Gürbüz, “Deep convolu-
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