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Abstract

Multiple-target tracking (MTT) is one of the key aspects of driver assistance systems,

and has been subject to considerable research. One critical part of an MTT system is

solving the data association problem, which is associating correct observations to the

existing tracks. Several data association algorithms have been proposed to solve this

problem. The multiple hypothesis tracker (MHT) is a well-studied and currently the

preferred method of data association in MTT application. MHT maintains several pos-

sible data association hypotheses or solutions and uses new observations to eliminate

unlikely hypotheses over time. Despite being regarded as the most prominent data

association method, MHT implementations remains a challenge because of its computa-

tional complexity. In this thesis, we have described an efficient method for reducing the

computational requirement of MHT in automotive applications.

This work also presents four most commonly used association algorithms. First, the

two types of single hypothesis trackers are introduced: sub-optimal nearest neighbour

or SNN and global nearest neighbour or GNN. Then the all-neighbour data association

methods: probabilistic data association (PDA) and joint probabilistic data association

(JPDA), and their extensions are presented.

The algorithms are implemented and tested for four different real case road scenarios, in

presence of clutter and missed detection, to check which tracker is more suitable to track

which traffic situation. The optimal sub-pattern assignment (OSPA) metric is used to

quantify and compare the performance of the association algorithms.
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Chapter 1

Introduction

Advanced Driver Assistance System or ADAS is a collection of safety systems (sensors

and signal processing algorithms) that work together to increase road safety and help

the driver as shown in figure 1.1. Some of the features include: adaptive cruise control

(ACC), collision avoidance system, proximity monitor, automatic parking, pedestrian

monitor and lane keep assist. Many of these features heavily rely on accurate estimation

of the car’s surroundings. Target tracking allows the system to detect obstacles, other

vehicles and pedestrians in the car’s surroundings and estimate their position and speed.

The objective of target tracking is to collect data from sensor’s field of view (FOV) and

then to segregate that data into sets of observations originating from targets of interest

and those originating from background clutter. There are two target tracking frameworks

- single target tracking (STT) and multiple target tracking (MTT) [2]. In STT, it is

assumed that there is only one target of interest amid clutter. The tracker only has to

decide whether an observation has originated from the target or the background noise

Figure 1.1: Top view of an Advanced Driver Assistance System. [1]
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Introduction 2

or clutter. While an MTT system involves a data association logic in order to decide

from which target, if any, a particular observation originated [3]. Once a list of potential

tracks is formed by estimating the number of targets, the kinematic parameters for each

track can be computed [4]. MTT is more complex due to the following reasons:

1. Unknown number of targets: The number of true targets in the vicinity is not

known in an MTT system. This ambiguity is also due to the presence of clutter,

false alarms and measurement loss in the sensor.

2. Association uncertainty: The identity of the origin of each observation is un-

known, i.e it is not clear which measurement is to be associated with which target.

3. Overlapping ambiguity: In case of multiple targets in close vicinity there could

be an overlap of ambiguities with common measurements shared by more than one

track.

There are many data association algorithms available in literature. The simplest ap-

proach is the nearest neighbour method, also known as the single hypothesis tracker. It

selects and propagates the single most likely association solution at each step. It has

two variants: sub optimal nearest neighbor (SNN) and global nearest neighbor (GNN).

Another set of association algorithms consider the probability of the data association of

the concerned observation with all the neighbours - the probabilistic data association

(PDA), joint probabilistic data association (JPDA) and their extensions [5], [6]. They

form multiple hypotheses at each scan and combine them into one, weighted by their as-

sociation probabilities [7]. Multiple hypothesis tracker (MHT) is a deferred decision logic

that maintains and propagates several data association (track-to-measurement associa-

tion) solutions before making a firm decision, assuming that the track-to-measurement

conflict will resolve as new data is received.

1.1 Motivation

A critical part of target tracking in ADAS is associating the measurements to the correct

targets when vehicles are closely spaced and rapidly changing their states. Commonly

used association algorithms like GNN and PDA do not perform well in case of heavy clut-

ter and close targets and suffer from the problems of track loss and track coalescence. To

address these problems, several extensions of GNN and PDA were developed like JPDA,

NN-PDA, kNN-JPDA and MHT. Among these methods, MHT is shown to provide im-

proved performance in MTT systems. There are two basic types of MHT frameworks:

hypothesis-oriented MHT or HOMHT [8] and track-oriented MHT or TOMHT. Out of
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the two, TOMHT is more favoured currently. It typically maintains a set of poten-

tial tracks instead of hypotheses and propagates most likely tracks using a track tree

structure.

Although TOMHT is the most preferred multiple-target tracking algorithm, it is also

the most complex association algorithm to implement and suffers from potential combi-

natoric explosion of number of tracks and hypotheses that can be formed at each time

step. Hence, MHT requires extensive computational resources and is rarely used in

ADAS applications.

1.2 Objective

The objective of this thesis is to implement a computationally feasible TOMHT that uses

a concept called inner gating to limit the number of tracks formed and reduce its com-

putation time. The performance of the algorithm is compared with the performance of

different data association algorithms for multiple object tracking in automotive applica-

tions. The tracking algorithms that were implemented are: SNN, GNN, PDA, NN-PDA

and TOMHT. The trackers were tested for different MTT road scenarios in presence of

measurement origin uncertainty and missed detections. The trackers are compared to

decide which algorithm is most effective in tracking different road scenarios and traffic

conditions. A performance metric called the optimal sub-pattern assignment or OSPA

metric is used to evaluate the performance of the tracking methods.

1.3 Thesis Outline

This thesis is divided into 6 chapters and an overview of each chapter is given below:

• Chapter 2: Kalman Filtering

This chapter presents the kinematic state estimation problem in target tracking,

which involves filtering and estimation of quantities like target position and ve-

locity. Filtering is the step that incorporates the assigned measurements into the

predicted tracks to update their state estimates.

• Chapter 3: Data Association

This chapter discusses different types of data association methods and their basic

functions that include gating, track-to-measurement correlation matrix and track

validity score and probability computation.
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• Chapter 4: Multiple Hypothesis Tracker

Implementation of the proposed track-oriented MHT is presented in this chapter.

The elements of this method are discussed in detail, that include track handling,

hypothesis generation, track confirmation and deletion and user presentation logic.

• Chapter 5: Simulation Result

This chapter briefly describes the OSPA performance metric and shows the results

of our comparative analysis.

• Chapter 6: Conclusion

This chapter concludes all the findings of this work and discusses about possible

future work.



Chapter 2

Kalman Filtering

This chapter covers the state estimation problem using Kalman filters in tracking sys-

tems. State estimation refers to the continual prediction and estimation of kinematic

states (position, velocity, acceleration etc.) of a moving target, x(t). The job of an esti-

mator is to estimate x(t), by combining a set of noisy measurements y(t) with predictions

from a previous time instant, x(t − 1), such that the estimation error is minimized in

some respect. The problem of state estimation has its roots in the concepts of least

square estimation (LSE). LSE uses a batch of data to estimate the parameters that

minimizes the sum of squared error [9]. Kalman filter can be derived from a recursive

form of LSE [10]. The main difference between recursive Kalman filter and LSE is that

the former includes process noise into the target motion model. Figure 2.1 depicts the

application of Kalman filter in the state estimation problem. The output of a physical

system (such as a moving target) is measured using sensors that convey some useful in-

formation about the kinematic behavior of the system. There is inherently some process

noise associated with this mapping. The sensor observations also include uncertainties

or measurement noise. The Kalman filter then estimates the unknown system states by

optimizing a given condition.

Figure 2.1: Application of the Kalman Filter

5



Kalman Filtering 6

The general filtering problem can be formulated as follows [11]

x(k + 1) = f(x(k), u(k), w(k)) (2.1a)

y(k) = h(x(k), v(k)) (2.1b)

Equation (2.1a) defines the system’s dynamics, where x(k+1) is the state vector at time

k+1, which is a function of the previous system states x(k), control vector u and process

noise w. Equation (2.1b) is the measurement model where y is the observation vector

and v represents the sensor noise. The state transition and measurement functions, f

and h respectively, along with noise characteristics are known to the filter. The job of

Kalman filter is to obtain the best estimate of x(k + 1) given a set of measurements,

{y(1), y(2), . . . y(k)}. The linear Kalman filter operates under linearity and Gaussian

conditions on system dynamics, discussed in section 2.1. If either of the process model

or measurement model is non-linear, extended Kalman filter (EKF) is used for state

estimation, which is discussed in section 2.2. Section 2.3 presents the system design and

problem formulation for different target tracking models.

2.1 Linear Kalman Filter

If we consider the system dynamics to be linear time-variant, equation (2.1a)-(2.1b)

changes to

xk+1 = Fxk +Guk + wk k > 0 (2.2a)

yk = Hxk + vk (2.2b)

Let x be the N -dimensional state vector that is to be estimated, F is the known N ×N
state transition matrix and H is the M × M measurement matrix where M is the

measurement dimension. wk and vk are uncorrelated, zero-mean, white, Gaussian noise

sequences with known symmetric positive semi-definite covariance matrices;

E[wkwk
T ] = Qk (2.3)

E[vkvk
T ] = Rk (2.4)

E[wkvk
T ] = 0 (2.5)
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Let x0 be the initial state of the system, which is a Gaussian random vector with known

mean and covariance matrix

E[x0] = x̂0|0 and E[(x0 − x̂0|0)(x0 − x̂0|0)T ] = P0|0 (2.6)

Then to obtain the state estimate of system given by (2.2a)-(2.2b), the Kalman filter

propagates the conditional probability density function p(xk|Y k), which is Gaussian for

all k

p(xk|Y k) ∼ N (x̂k|k, Pk|k) (2.7)

where Y k = {y1, y2, . . . , yk} denotes the sequence of measurements till time k. Condi-

tional mean of the pdf (2.7), x̂k|k is the estimate of xk and Pk|k is the covariance matrix

that quantifies the estimation uncertainty. Therefore, Kalman filter evaluates the con-

ditional pdf by propagating only its first and second moments [11]. This process is

recursive which means that to evaluate the current state estimate x̂k|k, the filter only re-

quires the new measurement yk and the previous estimate x̂k−1|k−1. The transition from

p(xk|Y k), which is the previous estimate to p(xk+1|Y k+1) new estimate is implemented

in two steps:

• Prediction or time update: This step evaluates the pdf p(xk+1|Y k) which is

the a-priori estimate of mean and covariance for the next step i.e. measurement

update. This predicted estimate represents the best knowledge about the system

at time k + 1 before the observation at that time instant is made [12].

• Filtering or measurement update: The filtering cycle calculates the posteriori

estimate p(xk+1|Y k+1), using the a-priori estimate from the previous step and

the new observation y(k + 1). It corrects the predicted state based on the new

information at time k + 1.

Given the system dynamics and initial conditions, the Kalman equations are given be-

low. The first step is to compute the predicted state and error covariance matrix using

equations given below

x̂k+1|k = Fx̂k|k + uk (2.8)

Pk+1|k = FPk|kF
T +Q (2.9)

Next, νk+1, known as the innovation, is calculated as the difference between the new

measurement yk+1 and predicted measurement Hx̂k|k in (2.10). The innovation quanti-

fies the new information contributed by observation at time k+1. Along with innovation,

the Kalman gain Kk+1, given by equation (2.11) is computed. This is the relative weight

given to predicted state and is automatically tuned by the filter. If measurement error
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is high, Kalman gain reduces and the filter places more weight on predicted state. On

the other hand, with a high gain filter gives more weightage to recent observation [13].

νk+1 = yk+1 −Hx̂k+1|k (2.10)

Kk+1 = Pk+1|kH
T (HPk+1|kH

T +R)−1 (2.11)

The final step is to compute the current estimates using equation (2.12)-(2.13).

x̂k+1|k+1 = x̂k+1|k +Kk+1νk+1 (2.12)

Pk+1|k+1 = (I −Kk+1H)Pk+1|k (2.13)

After each prediction and filtering update, the cycle is repeated with the previous esti-

mates used to project the new a-priori estimates. Figure 2.2 summarizes the complete

sequential, recursive Kalman filter algorithmq (2.8)-(2.9).

Figure 2.2: Prediction and filtering cycle of the Kalman Filter

2.2 Extended Kalman Filter

This section discusses the modified Kalman filter problem for the case when the target

dynamics and/or measurement process is nonlinear. An extension of linear Kalman

filter, known as the extended Kalman filter or EKF is used under these conditions.
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Consider the following nonlinear state space model:

xk+1 = f(xk, uk) + wk (2.14)

yk = h(xk) + vk (2.15)

where wk and vk are zero-mean, uncorrelated white Gaussian random noise sequences

with known covariance Q and R respectively. f(xk, uk) is the nonlinear state transition

matrix and h(xk) is the nonlinear measurement matrix. Due to the nonlinear dynamics

(2.14)-(2.15), the conditional pdf p(xk+1|Y k) and p(xk+1|Y k+1) are no longer Gaussian.

An optimal nonlinear filter in this case has to propagate the entire conditional pdf to

compute its mean and covariance [11]. To make this task simpler, EKF approximates

the nonlinear system dynamics to a linearized version. The linear approximation is done

by taking the Jacobian of the state transition matrix f(xk, uk) and measurement matrix

h(xk) around the last estimate. One cycle of EKF is composed of the following step:

1. Linearize the system model: Calculate the Jacobian of state transition matrix

around the previous estimate:

Fk+1 =
∂f

∂x

∣∣∣∣
x̂k|k

(2.16)

2. Prediction or time update: Use the linearized system dynamic to get the

predicted state and covariance:

x̂k+1|k = f(x̂k|k) (2.17)

Pk+1|k = Fk+1Pk|kF
T
k+1 +Q (2.18)

3. Linearize the measurement model: Calculate the Jacobian of measurement

matrix around predicted estimate:

Hk+1 =
∂h

∂x

∣∣∣∣
x̂k+1|k

(2.19)

4. Filtering or measurement update: Compute the Kalman gain, state and error

covariance:

Kk+1 = Pk+1|kH
T
k+1(Hk+1Pk+1|kH

T
k+1 +R)−1 (2.20)

x̂k+1|k+1 = x̂k+1|k +Kk+1[yk+1 − h(x̂k+1|k)] (2.21)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k (2.22)
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Figure 2.3: Prediction and filtering cycle of Extended Kalman Filter.

As seen from the above equations, the basic workings of EKF is like linear Kalman filter

but with linear approximation. However, EKF is computationally more complex than

its linear counterpart. Since it is based on approximations, the error covariance matrices

Pk+1|k and Pk+1|k+1 do not represent the true error in estimation. It also suffers from

convergence and stability problem, which means that if the approximation is not good

enough the filter may diverge and result in poor tracking performance. The operation

of EKF is summarized in figure 2.3.

2.3 Target Motion and Measurement Model

Two target models are used in this thesis to generate different trajectory scenarios.

First is a constant-velocity (CV) model which models the linear trajectories of targets

moving with constant velocity. Naturally, linear Kalman filter is used for tracking this

model. The second model considers maneuvering targets with a constant turn rate and

is tracked using extended Kalman filter. We discuss both models below.

2.3.1 Constant Velocity Model

Assume that the target is moving in a two-dimensional surveillance area with constant

velocity. Ideally the acceleration of the target is zero i.e. ẍ = 0. But in real world, the
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target velocity will undergo some variation and this is modelled by the random process

noise wk. The state and observation vectors are:

xk =


x(k)

ẋ(k)

y(k)

ẏ(k)

 yk =

[
xm(k)

ym(k)

]
(2.23)

where x(k) and y(k) are x and y position coordinates of the target and ẋ(k) and ẏ(k) are

the velocities. Considering that the system has no external input, equations (2.2a)-(2.2b)

reduce to:

xk+1 = Fxk + wk (2.24)

yk = Hxk + vk (2.25)

The state transition and measurement matrix are given as:

F =


1 ∆T 0 0

0 1 0 0

0 0 1 ∆T

0 0 0 1

 H =

[
1 0 0 0

0 0 1 0

]
(2.26)

where ∆T is the sampling time. Let the power spectral density of the process noise be

q, then the covariance matrix is:

Qk = q


∆T 3

3
∆T 2

2 0 0
∆T 2

2 ∆T 0 0

0 0 ∆T 3

3
∆T 2

2

0 0 ∆T 2

2 ∆T

 (2.27)

2.3.2 Coordinated Turn Rate and Velocity Model

A coordinated turn motion is a turn with a constant angular rate and velocity along

a curved road of constant radius [14]. Since in reality the curvature of roads are not

constant, a noise term is added to include the variation in curvature. The state vector

for this model includes turn rate ω in addition to the other states. Thus the state vector

at scan k is xk = [x(k), ẋ(k), y(k), ẏ(k), ω(k)]T . The observation vector is same as in CV
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model. The system state model is defined as follows:

f(xk) =



x+ ẋ
ωk

sin (ωk∆T )− ẏ
ωk

(1− cos (ωk∆T ))

y + ẋ
ωk

(1− cos (ωk∆T )) + ẏ
ωk

sin (ωk∆T )

ẋ cosωk∆T − ẏ sinωk∆T

ẋ sinωk∆T + ẏ sinωk∆T

ωk


(2.28)

Since the transition matrix is a nonlinear function of xk, EKF is used instead of linear

Kalman filter to track this model. Let σω be the standard deviation of turn rate, then

the process noise covariance is given by:

Qk = q



∆T 3

3
∆T 2

2 0 0 0
∆T 2

2 ∆T 0 0 0

0 0 ∆T 3

3
∆T 2

2 0

0 0 ∆T 2

2 ∆T 0

0 0 0 0 σω2

q


(2.29)

2.4 Clutter Model

In a tracking environment, there will be random interference in terms of undesirable

measurements. These false measurements are called the clutter.

Consider that the sensor FOV is divided into N resolution cell or pixels. Then the

clutter can be modelled based on the following assumptions [15]:

• the probability of false alarm detection in each cell is PFA = p.

• The event of such detection in each cell is independent across time and of each

other.

• they are uniformly spatially distributed.

Then the number of false alarms in these N cells follows the binomial distribution (m

success in N trails):

P{nFA = m} =

(
N

m

)
pm(1− p)N−m (2.30)

Following (2.30), the average number of false alarms will be E[nFA] = Np, and the

spatial density as:

λ =
E[nFA]

Vc
=
Np

Vc
(2.31)
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where Vc is the volume of N cells.

Equation (2.30) can be approximated with the Poisson distribution if N is large enough,

such that Np is of order 1 or more:

PFA(m) = e−Np
(Np)m

m!
(2.32)

= e−λVc
(λVc)

m

m!
(2.33)

Hence, the number of false alarms in a certain FOV volume can be sampled from the

Poisson distribution.

Then the spatial distribution of these false alarms follows the uniform distribution, which

means that the clutter is uniformly distributed over the sensor FOV volume Vc:

p(y|y is a false alarm) =
1

Vc
(2.34)

where y denotes the measured detection.



Chapter 3

Data Association

This chapter discusses some of the common data association (DA) methods. Figure 3.2

illustrates the basic recursive flow of a simple data association algorithm. Lets assume

that time is k > 0 and the tracks has been initiated in the previous scan. As new data is

received from the sensor, gating is performed to sort the reasonable track-to-observation

pairs from the unlikely ones. This is done to reduce the number of hypotheses compu-

tations. Then data association is performed to select one association hypothesis from

the list of all possible hypotheses. The tentative tracks are then tested for confirmation

and deletion, where tracks that fulfill a certain confirmation criteria are said to repre-

sent a true target and low-quality tracks are assumed to represent false tracks and are

deleted. This is known as track maintenance. Finally, filtering is performed to update

the track state estimates using the assigned observations. A statistical score is main-

tained for each tentative track, which allows a probabilistic method for track deletion

and confirmation. The track score function is introduced in section 3.1. The score is also

directly convertible to probabilities that can be used to evaluate alternative association

hypotheses. The process of gating is discussed in section 3.2. Section 3.3 discusses

Figure 3.1: Flow of a conventional Data Association algorithm.

14
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Figure 3.2: Types of data association algorithms.

the conventional single hypothesis, single neighbour data association approaches: sub-

optimal nearest neighbour (SNN) and global nearest neighbour (GNN). The nearest

neighbour approach (both SNN and GNN) attempts to select and propagate the sin-

gle most likely hypothesis at each time step. It assigns a unique track-to-measurement

pairing, so that at most one observation is used to update an already established track.

Another data association approach is the all-neighbours approach, discussed in section

3.4, in which a track is updated using all neighbouring measurements that fall within the

gated region. Probabilistic data association (PDA) is an all-neighbour approach which

assumes that there is only one target of interest in clutter and it has been initialized [3].

But PDA does not perform well in multiple-target scenarios. Hence it was modified into

the joint probabilistic data association (JPDA) for tracking multiple targets [15]. Mul-

tiple hypothesis tracker [4] is a deferred decision logic data association approach. It uses

all gated observations to form multiple alternative tracks and then uses successive data

to resolve the uncertainty in identifying the true track among the multiple possibilities.

There are two basic implementations of MHT:

1. Hypothesis oriented MHT (HOMHT): A hypothesis is a set of one or more

tracks that are all compatible with each other. At each scan, as new data is

received, the algorithm adds a new set of hypotheses to the old set (carried

over from the previous scan) by considering all possible combinations of track-to-

measurement assignments. Then the set is pruned by eliminating low probability

hypotheses.

2. Track oriented MHT (TOMHT): Instead of maintaining hypotheses from scan

to scan, TOMHT propagates a set of potential tracks. These tracks are updated

and pruned as new observations are received and then regrouped into hypotheses.

A track score is used to delete unlikely or low score tracks before they are formed
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into hypotheses and the surviving tracks are then passed on to the next scan. The

implementation of track oriented MHT is presented in chapter 4.

3.1 Track Score

The track score function is used to evaluate the conditional probability of the alternative

tracks. It defines the likelihood that the track corresponds to a true target as opposed

to the likelihood that all detections are false alarms. True targets are generally assumed

to be objects that persist in the tracking volume for several scans. False alarms, on

the other hand, refer to the erroneous and unwanted detections that do not persist over

multiple scans [4]. For maintaining the likelihood score, it is more convenient to use log-

likelihood ratio (LLR) instead of likelihoods, as LLR can be added recursively whereas

probabilities would have to be multiplied. The recursive formula for track score Li(k),

for ith track at scan k is [4]

Li(k) = Li(k − 1) + ∆L(k) (3.1)

Here ∆L(k), the track score increment, is dependent on the availability of detection for

track update, and is defined as,

∆L(k) =

ln(1− PD) ; no track update on kth scan

∆Lu(k) ; track update on kth scan
(3.2)

Since PD is always less than unity, ln(1 − PD) ≤ 0. Therefore, the track score, Li(k)

will decrease whenever the track is not updated. On the contrary, the track will be

incremented by a positive amount ∆Lu(k) when a measurement is used to update the

track. The increment, ∆Lu is given by

∆Lu = ln

[
PDVC

PFA
√
|S|

]
− M ln(2π) + d2

2
(3.3)
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where,

PD = Probability of detection

PFA = Probability of false alarm

M = Measurement dimension

VC = Volume of FOV (field of view)

S = Residual covariance matrix

d2 = Mahalanobis distance between observation and predicted target position

= νTS−1ν

Defining the false alarm density as βFT = PFA/VC and placing it in equation (3.3)

results in

∆Lu = ln

[
PD

βFT
√
|S|(2π)M/2

]
− d2

2
(3.4)

The initial score for new tracks is based on the first measurement used to initiate the

track and is calculated using (3.5), where βNT is the new track density.

Li(1) = ln

[
PDβNT
βFT

]
(3.5)

Track score is used to confirm potential tracks and delete unlikely ones. A track is deleted

if its track score is below a certain fixed deletion threshold. Similarly, a track will be

confirmed if its track score is above the confirmation threshold. The log-likelihood score

defined by (3.1), can directly be converted to track validity probability through

pi(k) =
exp(Li(k))

1 + exp(Li(k))
(3.6)

3.2 Gating

Gating is the technique used to eliminate unlikely track-to-observation pairs. A gate is

formed around the predicted track position and all observations that falls within the gate

area (satisfy the gating condition) are considered to be viable options for track update.

The process of gating is illustrated in figure 3.3. As defined in (2.10), innovation

is the difference between the actual measurement and predicted measurement whose

covariance matrix is S = (HPk+1|kH
T +R). Dropping the time index k for convenience,

the norm of innovation is calculated as

d2 = νTS−1ν (3.7)
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Figure 3.3: Illustration of the gating process.

Observation
Tracks y1 y2 y3 y4

T1 1000 d2
12 d2

13 1000
T2 1000 1000 1000 d2

24

Table 3.1: TMCR matrix for example shown in figure 3.3

d2, commonly known as the Mahalanobis distance, represents the statistical distance

between tracks and observations. Association between a track and an observation is

allowed if this distance is less than a gating threshold G i.e. d2 = νTS−1ν ≤ G. The

threshold G is taken from the chi-squared distribution where the degree of freedom is

equal to the measurement dimension M [15]. For example, let there be two tracks at

scan k− 1. If four measurements are received in the next scan k, as shown in figure 3.3,

then the Mahalanobis distance for each of the measurement and track pair is computed

using (3.7). The distance d2
ij is then compared to the gating threshold G to eliminate

the unlikely pairs. Given the distance function, a track to measurement correlation

(TMCR) matrix is formed. Table.3.1 shows the assignment matrix for the example

shown in figure ˙?? For gated measurements, the statistical distance is entered in the

matrix. And a large number (say 1000) is entered for measurements that fail the gating

test. The process of selecting the optimal assignment solution is done by solving this

TMCR matrix and it depends on the data association approach used.

3.3 Single Hypothesis Tracking

The nearest neighbour (NN) approach is the simplest type of data association method.

The algorithm maintains and propagates the single most likely hypothesis from scan to
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Observation

Tracks y1 y2 y3 y4 y5 y6

T1 1000 1000 d2
13 d2

14 d2
15 1000

T2 1000 d2
22 1000 1000 d2

25 1000

T3 d2
31 d2

32 1000 1000 1000 1000

T4 1000 1000 1000 1000 1000 1000

Table 3.2: TMCR matrix for gating situation shown in figure 3.4

scan. As new set of data is received, the gates are formed around the existing tracks and

the gated observations are sorted into the assignment matrix or TMCR matrix. This

matrix is then solved to identify the most likely observation assignment for the existing

tracks. Association conflicts arises when more than one measurement falls within the

gate of a track and/or when there is an overlap of gates and one or more measurements

are inside the gate of multiple tracks. One such situation is illustrated in figure 3.4.

Table 3.2 shows the assignment matrix for a given example.

Based on the method used to solve the TMCR, NN approach can be of two type: Sub-

optimal nearest neighbour (SNN) and global nearest neighbour (GNN):

• Sub-optimal nearest neighbour: In SNN [7], the TMCR matrix is searched

for the minimum statistical distance d2
ij and the jth observation is assigned to

ith track. The assigned track-observation pair is then removed from the TMCR

matrix and the process is repeated for the reduced matrix. This recursive process

of search and remove is continued for all the tracks. For example, the minimum

distance in table 3.2 is d2
25. So track T2 will be updated using observation y5. Next,

the second row (corresponding to T2) and fifth column (corresponding to y5) will

be removed from the matrix before searching for the next minimum distance.

A problem with SNN is that once an incorrect assignment is made, it is very

unlikely that the track will recover and this results in track loss. Also, as the

track-to-measurement assignment process is not optimal, SNN suffers from high

rate of false association in presence of closely spaced targets and heavy clutter.

• Global nearest neighbour: GNN [15] uses optimal assignment algorithms like

Munkres or Hungarian to solve the assignment problem. It solves the TMCR ma-

trix by minimizing the summed total distance of the assigned track-to-observation

pair. Since the association is optimal, GNN suffers from less number of track loss

and false association as compared to SNN.
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Figure 3.4: Association conflict situation.

Measurements that do not fall inside any gate are used to initiate new tracks. And

tracks that has no gated or assigned measurement are simply extrapolated in time,

x̂k|k =

x̂k|k−1 +Kνk ; if measurement is assigned for track update

x̂k|k−1 ; if no valid measurement for track update
(3.8)

Track management is done to eliminate redundant and false tracks. An ND-scan logic

is used for track deletion, wherein tracks with ND consecutive missed detections are

assumed to be false tracks and are deleted [4]. Tracks that are very similar are combined

together to avoid redundant tracks. Consider two tracks whose estimates at scan k are

given as

Track 1 : x̂1
k|k and P 1

k|k (3.9)

Track 2 : x̂2
k|k and P 2

k|k (3.10)

If Dth is the merging threshold, then the two tracks will be fused if they satisfy the

following condition:

(x̂1
k|k − x̂

2
k|k)

T (P 1
k|k + P 2

k|k)
−1(x̂1

k|k − x̂
2
k|k) ≤ Dth (3.11)

And the combined state and covariance is given by [3]

x̂ck|k = x̂1
k|k + P 1

k|k(P
1
k|k + P 2

k|k)
−1(x̂1

k|k − x̂
2
k|k) (3.12)

P ck|k = P 1
k|k − P

1
k|k(P

1
k|k + P 2

k|k)
−1P 1

k|k (3.13)
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3.4 All Neighbour Data Association Approach

The all neighbours approach uses all gated observations, weighted by their association

probabilities to update the track of interest.

3.4.1 Probabilistic Data Association

The probabilistic data association method assumes that there is only one target of inter-

est in clutter and it has been initialized [3]. In presence of multiple targets, PDA evalu-

ates each track individually in a sequential manner, like multiple single-target tracking.

If there are m gated measurements for the ith track, then the number of possible as-

sociation hypotheses will be m + 1. The first hypothesis, H0 is the case that none of

the measurements is target originated. Similarly, hypothesis Hj(j = 1, 2, . . . ,m) is the

event that the jth measurement is target originated.

Hj =

none of the measurement is valid ; j = 0

yj is the valid measurement ; j = (1, 2, . . . ,m)
(3.14)

The subscript i, denoting track i is dropped for notational convenience. The association

probability pj , which is the probability of hypothesis Hj being true can be calculated as

[15]

pj =


b

b+
∑m

k=1 ak
; j = 0

aj
b+

∑m
k=1 ak

; 1 ≤ j ≤ m
(3.15)

where

b = PFA
√
|2πS|1− PD

PD
(3.16)

aj = e−0.5νTj S
−1νj (3.17)

After computing the probabilities, the hypotheses are merged to get the current state

estimates. The standard Kalman filter state update equation becomes [3]:

x̂(k|k) =
m∑
j=0

x̂j(k|k)pj (3.18)
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Where x̂j(k|k) is the estimated state conditioned on the jth measurement being correct

with a probability of pj . This conditional estimate is given by

x̂j(k|k) =

x̂(k|k − 1) +Kνj ; j = (1, 2, . . . ,m)

x̂(k|k − 1) ; j = 0
(3.19)

where innovation νj is

νj = yj −Hx̂(k|k − 1) (3.20)

The Kalman gain K and predicted state x̂(k|k − 1) are same as in equation (2.11) and

(2.8) respectively. The combined covariance is

Pk|k = p0P (k|k − 1) + (1− p0)Pc(K|k) + Ps(k|k) (3.21)

where

Pc(k|k) = P (k|k − 1)−KSKT (3.22)

Ps(K|K) = K(

m∑
i=1

piνiν
T
i − ννT )KT (3.23)

ν =

m∑
i=1

piνi (3.24)

The covariance given by (3.21) is an extension of equation (2.13) for PDAF. For the

case that none of the gated measurements are correct, the state estimates will not be

updated and estimated covariance will be P (k|k− 1) weighted by the probability of this

event p0. For the event that correct measurement is available, the covariance update

Pc(k|k) is weighted by probability (1 − p0). But, since it is not known which of the m

measurements is correct, the term Ps(k|k) is added to compensate for this error.

3.4.2 Joint Probabilistic Data Association

JPDA is an extension of PDA which uses all tracks and observations in the vicinity.

The state estimation and covariance computations are same as PDA, using equations

(3.18) to (3.24). Unlike PDA, JPDA assumes that there can be multiple targets with

shared measurements in clutter [16]. Consider an association conflict situation shown

in figure 3.5. There are three measurements, of which y1 falls within the gate of track

T2, observation y2 is inside the gates of both tracks T1 and T2 and y3 falls inside the gate

of track T1. While computing the association probabilities for track T1, JPDA will give

less weightage to observation y2 because of its presence inside the gate of T2. A list of all

possible association hypotheses is generated along with their corresponding hypothesis
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probabilities. The hypothesis likelihoods are computed as [4]

p(Hk) =
∏

Track i assigned
to measurement j

gijPD
∏

Tracks assigned
to no measurement

(1− PD)
∏

Unassigned
measurements

PFA (3.25)

Where gij is the Gaussian likelihood function of the event that measurement j is assigned

to track j, and is defined as,

gij =
e−d

2
ij/2

(2π)M/2
√
|Sij |

(3.26)

where d2
ij is the Mahalanobis distance and Sij is the residual covariance of the association

of observation j to track i. Table.3.3 gives the hypothesis matrix for the example shown

in figure 3.5, where j = 0 refers to no observation assignment. Now to compute the asso-

ciation probability pij of assigning measurement i to track j, the hypothesis probabilities

of those hypotheses are summed which includes this assignment. For example,

p10 = p(H1) + p(H4) + p(H6) (3.27)

p11 = p(H2) + p(H5) + p(H7) (3.28)

p20 = p(H1) + p(H2) + p(H3) (3.29)

p21 = 0 (3.30)

The association probability of a non-gated observation is zero. The probability for

observation that are not shared by any other track is computed to be more compared to

an observation that is gated by multiple tracks. For instance, p21 will be more heavily

weighted than p22 and p13 will be more than p12. The rest of the calculation is done

using (3.18) to (3.24).

Figure 3.5: Example of association conflict for JPDA.
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Hypothesis Tracks Hypothesis Probability

Hk T1 T2 p(Hk)

1 0 0 (1− PD)2P 3
FA

2 1 0 g11PD(1− PD)P 2
FA

3 2 0 g12PD(1− PD)P 2
FA

4 0 2 g22PD(1− PD)P 2
FA

5 1 2 g11g22P
2
DPFA

6 0 3 g23PD(1− PD)P 2
FA

7 1 3 g11g23P
2
DPFA

8 2 3 g12g23P
2
DPFA

Table 3.3: Hypothesis matrix for example shown in figure 3.5

3.4.3 PDA Extensions

In both PDA and JPDA, the use of weighted-average method for tack update leads to

biased tracks in case of closely spaced targets. Which means that if the targets are

in close proximity, their gates will overlap and they will be updated with the same

sets of measurements and move closer than they actually are. In worst case, this often

results in the two tracks to coalesce to a position midway between the two targets. A

number of extensions of PDA and JPDA has been proposed to address the problem of

track coalescence. The nearest-neighbour PDA or NNPDA is one such extension, first

proposed in [6]. NNPDA is like a combination of GNN and PDA. It uses association

probabilities to associate measurements to tracks on a one-to-one basis by solving the

TMCR matrix. It is much like nearest neighbor approach, except that the measure of

nearness is the association probability, rather than commonly used statistical distance

[6]. A similar extension of JPDA was proposed in [17] called k-NNJPDA. k-NNJPDA

forms all possible hypotheses, like in JPDA, and selects k most likely hypotheses for

association probability calculation and track update. The value of k should be high

enough to avoid track loss and low enough to prevent track coalescence [5]. When

k = 1, k-NNJPDA will be equivalent to NNJPDA , so that each track will be updated

with only one observation.
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Multiple Hypothesis Tracker

Multiple hypothesis tracker (MHT) is a deferred decision logic that maintains and propa-

gates several data association (track-to-measurement association) solutions before mak-

ing a firm decision, assuming that the track-to-measurement conflict will resolve as new

data is received [4]. As discussed in chapter 3, based on how the association hypotheses

are propagated in time, MHT can be of two types. HOMHT which maintains a set of

most likely hypotheses from scan to scan and expands and prunes the list as new data is

received. The other type of MHT is TOMHT which propagates a set of high quality po-

tential tracks instead of hypotheses. Both track-oriented and hypothesis-oriented MHT

suffer from the problem of combinational explosion of the number of hypotheses/tracks

that can be formed at each scan. The number of possible tracks and hypotheses formed

has to be kept under control to ensure the computational feasibility of MHT algorithm.

This thesis presents an implementation of TOMHT in an automotive tracking scenario

with inner gating to make it more computationally feasible. We have used several

techniques to limit the number of tracks in MHT. To represent and store all possible

tracks and hypotheses in TOMHT, we have used a data structure called track tree (shown

in figure 4.2 ). A family in this structure is defined as a set of tracks that have a common

Figure 4.1: Association example for TOMHT track tree formation.

25
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Figure 4.2: Tree structure for example in figure 4.1.

root node and corresponds to a single target [4]. Each branch emanating from a node in

the family represents a different association hypothesis for that target. And all tracks in

a family are incompatible with each other, as they share at least one common node. As a

new set of observations is received, the tracks are updated using gated observations. The

track tree is extended to include these new data association hypotheses and new trees

are created that represents new potential targets. Pseudo-measurements are included

for each track to represent the H0 hypothesis or missed detection.

Consider the gating scenario shown in figure 4.1. Let there be two detections at kth scan,

yk = {yk1 , yk2}. These observations are used to initiate two new tracks T k1 (starting family

F1) and T k2 (starting family F2). Again at scan k+1, three observations are received and

gating is performed around the predicted positions of the two tracks. Observation yk+1
1

falls inside the gates of both tracks T k1 and T k2 ; yk+1
2 is gated by T k2 , as shown in figure

4.1. Figure 4.2 illustrates the track tree structure for this given example. As observation

yk+1
3 does not fall inside any gate, it is used to initiate a new family, F3. The other two

tracks are updated with all viable measurements and missed detection hypothesis. As

new data is received at each scan, the track tree is expanded to accommodate all possible

association hypotheses. Thus, a great many tracks can potentially be formed in MHT,

with many of tracks being incompatible with each other.
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4.1 MHT Algorithm Elements

Figure 4.3 shows the flow of track-oriented MHT algorithm.

4.1.1 Track Formation

The first element of TOMHT is track formation which represents the operation and

maintenance performed on the surviving tracks from the previous scan. At every scan,

when a new set of observations is received, standard gating is performed on tracks

that were carried over from the previous scan. Gating helps in determining viable

measurement-to-track pairings. Each track is updated using all gated measurement

and extrapolated (track update with no current measurement) to form potential tracks.

Observations that does not fall within the gates of any track are used to initiate a new

track. As there are no restrictions in MHT as to how many tracks can be updated using

one observation, multiple tracks can share one or more common measurements. This

can also lead to formation of too many tracks and hence to excessive computational

requirements. We used a technique called inner gating to limit the number of tracks

formed. Inner gating is when extrapolated tracks are only formed for those tracks

that does not have any observation within its inner gate. It avoids the formation of

redundant extrapolated tracks when the observations are close enough to the predicted

track position. Although this greatly reduces the computational burden of TOMHT, it

can also degrade the overall tracking performance when targets are in close proximity.

Another technique is to not let the number of tracks formed by the system to exceed a

maximum limit, Nmax. When the number of tracks reaches the limit Nmax, a pruning

process is initiated and no new tracks are allowed to be formed.

4.1.2 Track-Level Pruning and Confirmation

Track score and track validity probability is computed for each track in the track tree

structure, using equations (3.1) and (3.6) respectively. In track-level pruning, these

track scores are compared with a deletion threshold. Tracks that have a score less than

this threshold are deleted. Surviving tracks are then checked for confirmation, that is,

track will be confirmed only if its score is above a fixed confirmation threshold. This

confirmation status is used to determine the eligibility of a track for user representation

(explained in section 4.2).
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Figure 4.3: Flowchart of track-oriented MHT logic.
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4.1.3 Confirmation Matrix

Tracks are considered to be compatible if they have no observation in common. Incom-

patibility between two tracks are passed on to their descendant tracks as well. For each

track a compatibility list (list of tracks which are compatible to that track) is required

for hypothesis formation. A compatibility matrix is maintained and stored at each scan.

If number of existing tracks is nT , then compatibility matrix will be an (nT ×nT ) defined

as follows

Cij =

1 ; if ith and jth tracks are compatible

0 ; if ith and jth tracks are incompatible
(4.1)

This matrix is formed by comparing all tracks with each other for compatibility. Two

tracks are considered to be incompatible if

1. Both tracks belong to the same family, which signifies that they spawned from the

same parent track.

2. They share common observation in current scan.

3. They were incompatible in the previous scan, which signifies that they shared a

common observation sometime in the past.

For example, consider tracks at scan (k + 1) in figure 4.2. The compatibility matrix for

this set of tracks is given in table 4.1.

4.1.4 Hypothesis Generation and Pruning

A hypothesis is a set of compatible tracks that together represents the multiple targets

being tracked. Number of tracks in a hypothesis is not fixed and can range from one

to all tracks in the track file. Multiple such hypothesis are formed to account for all

possible combinations of compatible tracks. This can lead to combinational explosion

Tracks T1 T2 T3 T4 T5 T6

T1 0 0 0 1 1 1
T2 0 0 1 1 1 1
T3 0 1 0 0 0 1
T4 1 1 0 0 0 1
T5 1 1 0 0 0 1
T6 1 1 1 1 1 0

Table 4.1: Compatibility matrix for tracks at scan (k + 1) in figure 4.2
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in number of hypotheses as the track tree grows. A breadth-first approach is used for

hypothesis formation in this implementation. It starts by defining one track hypotheses

and then expanding them by adding in more tracks. As tracks are added to a hypothesis,

their track score are also summed to compute the hypothesis score. The score of a given

hypothesis Hj can be written as

LHj =
∑
Ti∈Hj

Li (4.2)

Compatibility constraint of tracks in a hypothesis should be maintained while adding

more tracks to it, this can be achieved easily by using the compatibility matrix. The

expansion of hypotheses is done using only positive score tracks first. After this process,

there will be a list of hypothesis with only positively scored tracks in them. Then tracks

with negative scores are added, but this can only be done till the hypothesis score is

above a set threshold. By the end of this process, there could be multiple hypotheses

with same set of tracks in them; such repeated hypotheses are deleted. Also hypotheses

with very low hypothesis score are pruned. The hypothesis with the highest score is

called the most likely hypothesis and is used for updating the global track file for user

representation.

4.1.5 Global Level Pruning

As a given track can be included in more than one hypotheses, the global track prob-

ability, pTi , is computed as the sum of probabilities of all hypotheses that contain that

track.

pTi =
∑

∀j|Ti∈Hj

pHj (4.3)

where pHj is the probability of hypothesis j and is computed using hypothesis score Hj

and scores of all J hypotheses

pHj =
exp(LHj )

1 +
∑J

k=1 exp(LHk
)

(4.4)

The global level pruning is done by comparing the track probability given by equation

(4.3). Low score tracks that are not part of any surviving hypotheses will have zero

track probability. Tracks with probability below a fixed deletion threshold are deleted.

But this pruning is only done on unconfirmed tracks. If the track is confirmed, then it

must have five consecutive miss detection along with a low track probability for it to be

deleted. Finally Kalman state estimation is done on tracks that survive this pruning.



Multiple Hypothesis Tracker 31

As Kalman filtering step is computationally heavy, this step is performed only when all

poor quality tracks have been pruned.

4.1.6 N-Scan Pruning

To further restrict the number of branches in the track tree, an N-scan pruning [4]

technique is used. For trees with depth more than N , a new root node is assigned going

N scans back, based on tracks included in the most likely hypothesis. And all tracks

that do not share this newly assigned root node are deleted. A family that does not

have a track in the most likely hypothesis, will not have a new root node. Such families

will be checked for any confirmed tracks, if none of its tracks are confirmed then the

whole family can be deleted. But if there is even one confirmed track in that family

then the new root node will be selected on the basis of highest sum track probabilities

of leaf nodes. In N-Scan pruning, the value of depth (N) limits the number of branches

formed. Taking a large N will allow for more observations to be included before the

decision of pruning is made. This will improve system performance, but will also allow

a lot of branches to be formed resulting in excessive computational time requirement.

On the other hand, too small a value of N will greatly compromise the performance. So

N should be taken such that there is a balance between computational complexity and

performance. In this implementation N is set at 3. For example, again consider the

track tree illustrated in figure 4.2. Let at scan k + 2, the most likely hypothesis include

tracks {1, 7, 9} and for this example N = 1. Then going one scan back, new root nodes

are established, as illustrated in figure 4. Tracks that do not share this newly assigned

root node are deleted. In this example, deleted tracks will be {3, 4, 5, 6}.

Figure 4.4: Example of N-Scan pruning.
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4.2 Presentation of MHT Data

As seen above, a TOMHT system produces several potential tracks corresponding to the

same target. Also, tracks are formed and deleted multiple times at every scan, which

can lead to inconsistency in track identities associated with each track. Thus, a direct

continuous output to user becomes difficult. To address this problem two set of tracks

are maintained; primary track file and secondary track file.

4.2.1 Primary Track File

The first set of tracks is known as primary tracks, it contains all surviving tracks that

are carried forward to the next scan. These tracks are arranged in decreasing order of

their track score. Primary track file can contain more than one track for each target.

Gating, track formation, track level pruning and global level pruning are performed on

members of this track file. Table 4.2 presents the structure of primary track file. Table

4.2 is described in detail as follows:

• Start Index contains the measurement ID of the observation used to initiate the

family to which that track belongs. It also contains the scan number at which its

family was first formed. This is done to keep track of members belonging to one

family. Tracks with same start index will have emanated from the same root node

and hence belong to the same family. For example in figure 4.2, start index of

track T k+3
3 will be [k, 1] and that of track T k+2

9 will be [k + 1, 3]

• TID stands for track ID and holds an integer number that represents a track.

This can change in each scan as tracks are deleted and new ones are added to the

track file.

• TID History holds the list of all TIDs that was assigned to the track at each

scan. This field signifies the parent node from which a track was spawned. In the

example shown in figure 4.2, TID history of T k+2
8 will be [2, 5, 8].

• MID contains the list of IDs of measurement that was used to update the track

in every scan. For track T k+2
3 , MID will be [1, 0, 1].

• CID can hold only two values, 1 or 0, and signifies if a track is confirmed or not

respectively.

• Track score, track validity probability and track probability are calculated

using equations (3.1), (3.6) and (4.3) respectively.
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1 2 3 4 5 6 7 8 9 10

Start
Index

TID TID
History

MID Est.
State

Est.
Covar

CID Track
Score

Validity
Prob

Track
Prob

[k,mk
i ] T ki {T ki }Kk=1 {mk

i }Kk=1 x̂(k|k) P (k|k) 0/1 Li(k) pi pTi

Table 4.2: Primary track file structure.

4.2.2 Global Track File

This track file is used for user representation. There can be only one track representing

a target in this set, that is, there can be only one track from each family. At each

scan, after all data processing is done, most likely confirmed tracks are chosen from

the primary track set. Then a primary-to-global track assignment is done to update

the global tracks with primary tracks that best represents the target. This is done by

using the tree structure shown in figure 4.2. At each scan, hypothesis formation is done

using primary tracks. Once global track file is formed, confirmed primary tracks that

are included in the most likely hypothesis (hypothesis with highest score) and belongs

to same family as the target in global track, can be used to update it. Unassigned tracks

from most likely hypothesis are used to create new global tracks. Global tracks that do

not get a primary track assignment are extrapolated for several scans (typically four or

five) before getting deleted. And since each hypothesis can have only one track from a

family, there will be only one track corresponding to a target in the global track file.

Table 4.3 presents the structure of global track file used.

1 2 3 4 5 6

Start
Index

TID MID Est.
State

Est.
Covar

AID

[k,mk
i ] T ki {mk

i }Kk=1 x̂(k|k) P (k|k) 0/1

Table 4.3: Global track file structure.



Chapter 5

Simulation Results

5.1 OSPA Performance Metric

In a single-object system, the root mean square (RMS) error is used for performance eval-

uation. RMS is the difference between estimated state and true state. But a multiple-

target tracker is different from a single-target system in the sense that both the target

states and the number of targets are unknown. For example, consider a tracking situa-

tion where there are two true targets present in the FOV and the estimated number of

targets are three. A simple RMS error will not work in this condition for two reasons:

1. It is not known which ground truth is to be compared with which estimated track

2. the error in estimating the number of targets also has to be captured.

The optimal sub-pattern assignment (OSPA) metric was first introduced in [18] as a

consistent metric for evaluating the performance of multiple-target trackers. The OSPA

metric is comprised of two components: localization error and cardinality error; the lo-

calization error signifies the inaccuracy in state estimation and cardinality error captures

the error in estimating the number of targets.

Let at kth scan, the set of estimated tracks be X = {x1,x2, . . .xm} and set of true

targets be Y = {y1,y2, . . .yn}, where m and n are the number of estimated and true

tracks respectively. An m× n cost matrix is then computed whose entries are:

Cij = min(c, d(xi,yj)) (5.1)

where d(xi,yj) is the Euclidean distance between the two tracks and c is a positive

unitless parameter known as the association cut-off radius. The cost matrix is solved for

34
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optimal X-Y assignment using optimal assignment algorithms like Munkres [19], this

will give us the minimum summed dcost. p is the order of OSPA metric and can be

0 ≤ p ≤ ∞. The OSPA metric can be computed as:

dospa =

[
1

max(m,n)
(dpcost + cp|m− n|)

]1/p

(5.2)

dloc =

[
dpcost

max(m,n)

]1/p

and dcard =

[
cp|m− n|
max(m,n)

]1/p

(5.3)

The order parameter p defines sensitivity to outliers or estimates that are not close

to any ground truth target. The metric becomes more unforgiving to the outliers for

greater values of p. On the other hand, the parameter c determines the importance of

target number accuracy as compared to localization error. If c is small then localization

error is more strongly weighted than cardinality error and vice versa. It also gives the

cut-off distance for deciding whether two points in X and Y should be paired together.

5.2 Results

Track oriented MHT is implemented, both with and without inner gating in the presence

of measurement origin uncertainty. The performance of TOMHT is compared with other

data-association algorithms namely, sub-optimal nearest neighbor (SNN), global nearest

neighbor (GNN), probabilistic data association (PDA) and nearest-neighbor PDA (NN-

PDA). These data association algorithms are implemented for four different multiple-

target tracking scenarios and compared for a fixed detection probability and false alarm

density. OSPA metric is used for performance evaluation and comparison.

Out of the four scenarios implemented, three were modelled on the constant velocity

(CV) model with linear trajectories, discussed in section 2.3.1. The tracker is executed

for 10s with a sampling period (∆T ) of 0.1s, giving a total of 100 scans. The process

noise intensity for CV model is taken to be q = 0.01m2/s3 and measurement noise

covariance matrix R = diag{σ2
x, σ

2
y}, where σ2

x = σ2
y = 0.25m2. The last scenario is

modelled using the coordinated turn rate and velocity (CTRV) model for a period of

25s and 250 scans. The spectral density of process noise is set as q = 0.1m2/s3 and

standard deviation of turn rate is σ2
ω = 0.01rad2.

5.2.1 Scenario 1: Three Sparse Targets

Consider three sparsely distributed linearly moving targets with constant velocity. Fig-

ure 5.1 shows the ground truth vs estimated tracks obtained by the proposed TOMHT
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Figure 5.1: True and estimated trajectories of scenario 1.

with inner gating. Note that all targets are born at scan k = 1 and dies at scan k = 100.

For this scenario, probability of detection, Pd = 0.9 and average number of false alarms

per scan, Nfa = 3. The average performance is computed over 100 Monte Carlo runs.

Figure 5.2 shows the OSPA distance for MHT, MHT with inner gating, GNN, PDA and

NN-PDA. The order parameters p and c were set at 1 and 20 respectively. Figures 5.3

and 5.4 shows the two components of OSPA: localization and cardinality. A comparison

of single hypothesis trackers and multiple hypothesis tracker shows that after the initial

settle-in phase, the localization error in all filters stabilizes to almost the same level.

On the other hand, cardinality OSPA is minimum in case of MHT and worst in case of

PDA. This indicates that most number of false tracks are generated in PDA, compared

to other trackers. Table 5.1 compares the computation time of the two MHT algorithms.

We can conclude that the use of inner gating significantly improves the running time of

MHT without compromising its performance.

Figure 5.2: OSPA distance for scenario 1.
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Tracking Algorithm Running time (sec)

MHT 1890
MHT with inner gating 165

Table 5.1: Computation time of MHT for scenario 1.

Figure 5.3: OSPA localization component for scenario 1.

Figure 5.4: OSPA cardinality component for scenario 1.

5.2.2 Scenario 2: Three Crossing Targets

This scenario has three linear targets moving with a constant velocity. Target 1 and

target 2 are crossing paths at k = 20, and target 1 and target 3 are crossing at k = 70.

Figure 5.5 shows the true target trajectories versus estimated tracks as tracked by MHT

(with inner gating). For comparison, the detection probability is taken to be 0.9 and

average number of false alarm is 3. The OSPA comparison is shown in figure 5.6 for all

five trackers obtained over 100 MC runs. Figure 5.7 and 5.8 shows the localization and

cardinality errors. The occasional spikes in localization error occurs due to track loss

and is worse in case of PDA and SNN. This is due to the problem of track coalescence

in PDA when targets are in close proximity and high track loss rate in SNN. NN-PDA

shows the best performance in this scenario, both in terms of cardinality and localization
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Figure 5.5: True and estimated trajectories of scenario 2.

Figure 5.6: OSPA distance for scenario 2.

error. MHT also has almost the same performance as NN-PDA, except that it takes a

slightly longer time to settle to an average value.

Figure 5.7: OSPA localization component for scenario 2.
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Figure 5.8: OSPA cardinality component for scenario 2.

5.2.3 Scenario 3: Three Parallel Targets

In this scenario, three closely spaced linear targets are considered. All three are moving

in a straight line with constant velocity and parallel to each other. The distance between

two adjacent targets is kept at 2 units. This multiple-object trajectory is tracked using

all five trackers. Figure 5.9 and 5.10 shows the estimated trajectories tracked by PDA

and MHT respectively. We can see that PDA results in a lot of track breakage and track

coalescence, whereas MHT gives a much smoother result.

Figure 5.9: True and estimated trajectories of scenario 3 obtained by PDA.

Figures 5.11, 5.12 and 5.13 shows the OSPA distance for 100 MC trail runs. All filters are

implemented for Pd = 0.9 and Nfa = 3. It is clear that PDA has the worst performance

both in terms of cardinality and localization error, closely followed by SNN. Whereas,

GNN and NNPDA perform the best with lowest localization error and close to zero

OSPA cardinality. MHT when used with inner gating gives an OSPA cardinality which

approaches SNN, which in turn increases its overall OSPA distance.
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Figure 5.10: True and estimated trajectories of scenario 3 obtained by MHT.

Figure 5.11: OSPA distance for scenario 3.

Figure 5.12: OSPA localization component for scenario 3.

5.2.4 Scenario 4: Two Maneuvering Targets

Here two maneuvering targets are simulated using the CTRV model. The two targets

takes a U-turn in close proximity without crossing each other and then moves apart.

Figure 5.14 shows the tracked trajectory obtained by MHT, and figure 5.15 shows the

same trajectory tracked by PDA. We can see that track coalescence is happening in
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Figure 5.13: OSPA cardinality component for scenario 3.

figure 5.15, where the estimated tracks 1 starts following the wrong target when the two

targets are close to each other. This trajectory was tracked by seven data association

algorithms: GNN, PDA, JPDA, NN-PDA, kNN-JPDA, NN-JPDA and MHT. Figure

5.16 shows the OSPA distance comparison for this scenario. It is evident that the

problem of track coalescence is worse in case of PDA and JPDA, resulting in a high

OSPA peak. The performance improves a little with the two JPDA extensions: kNN-

JPDA and NN-JPDA. MHT is shown to give one of the best results, along with GNN

and NN-PDA.

Figure 5.14: True and estimated trajectories of scenario 4 obtained by PDA.
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Figure 5.15: True and estimated trajectories of scenario 4 obtained by MHT.

Figure 5.16: OSPA distance for scenario 4.

Figure 5.17: OSPA localization component for scenario 4.
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Figure 5.18: OSPA cardinality component for scenario 4.



Chapter 6

Conclusion

In this thesis, we investigated several methods of data association and target tracking for

automotive applications. We proposed an efficient MHT method that used inner gating

to reduce the computational complexity of track-oriented MHT. Inner gating limits the

number of track branches that are formed and given to the hypothesis formation logic.

We have described the implementation of the proposed track-oriented MHT along with

a detailed comparison with other single hypothesis trackers, namely SNN, GNN, PDA,

JPDA and NN-PDA.

The trackers were tested for four different MTT road scenarios in presence of random

clutter and detection uncertainty. Three of the scenarios had linearly moving targets

with different trajectories: sparse, crossing and closely moving targets, and were tracked

using the constant velocity - linear Kalman filter motion model. The forth trajectory

was modelled on coordinated turn rate and velocity - extended Kalman filter model, and

had two maneuvering targets with a close turn. Monte Carlo simulations were performed

for each scenarios to get the OSPA performance metric for all the trackers.

All of the data association algorithms were shown to have almost the same estimation

accuracy when tracking the sparse targets. In the other three cases, PDA and SNN had

the worst OSPA. This is because SNN is not good at resolving gating conflicts and is

more likely to make incorrect assignment. Whereas PDA suffers from track coalescence,

since it tends to update close targets with same set of measurements. NN-PDA and

MHT are better at tracking crossing and closely spaced targets. But in case of close

parallel targets, use of inner gating in MHT can degrade the overall performance. This

can be improved by decreasing the inner gating threshold, which will in turn increase

the computation time. Hence, there is a trade-off between run-time and accuracy in this

case. For the other two scenarios, i.e crossing and maneuvering targets, the proposed

MHT gives the best estimation accuracy.

44
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Hence for near ideal automotive situations when the cars/vehicles are widely spaced, any

of the conventional tracker can be used reliably. But in case of crossing cars, say at a

road intersection or round-about, PDA, JPDA and SNN fails. In these situations MHT

and NN-PDA is shown to work best. The most complex scenario to track is a densely

populated road, when vehicles are moving in tight parallel lanes. For best results from

MHT, the size of inner gating should be carefully selected.

6.1 Future Work

In this work, we have assumed that each target in the sensor FOV are point objects and

can result in at-most one detection. The work can be extended to include a more prac-

tical extended target model, in which same target can result in multiple detections. An

average ADAS system uses multiple on-board sensors to increase the detection probabil-

ity and enlarge its FOV. The proposed MHT can be implemented for a multiple-sensor

multiple-target (MSMT) scenario. Also, an interacting multiple model (IMM) algorithm

can be used to efficiently model the maneuvering targets with changing state models.
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